Как найти направление силы лоренца правило

Содержание:

Сила Лоренца:

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле Сила Лоренца - основные понятия, формулы и определение с примерами

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде
Сила Лоренца - основные понятия, формулы и определение с примерами
где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), Сила Лоренца - основные понятия, формулы и определение с примерами — средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда
Сила Лоренца - основные понятия, формулы и определение с примерами
где Сила Лоренца - основные понятия, формулы и определение с примерами — число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:
Сила Лоренца - основные понятия, формулы и определение с примерами

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости Сила Лоренца - основные понятия, формулы и определение с примерамисоставляющая вектора индукции Сила Лоренца - основные понятия, формулы и определение с примерами магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца Сила Лоренца - основные понятия, формулы и определение с примерами действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы Сила Лоренца - основные понятия, формулы и определение с примерами (R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности
Сила Лоренца - основные понятия, формулы и определение с примерами

и радиус окружности

Сила Лоренца - основные понятия, формулы и определение с примерами
описываемой частицей в магнитном поле.

Сила Лоренца - основные понятия, формулы и определение с примерами

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле
Сила Лоренца - основные понятия, формулы и определение с примерами

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

Сила Лоренца - основные понятия, формулы и определение с примерами

где Сила Лоренца - основные понятия, формулы и определение с примерами — электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная Сила Лоренца - основные понятия, формулы и определение с примерами Сила Лоренца - основные понятия, формулы и определение с примерами — магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда Сила Лоренца - основные понятия, формулы и определение с примерами, а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике — это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

Сила Лоренца - основные понятия, формулы и определение с примерами

где I — сила тока; е — заряд частицы; Сила Лоренца - основные понятия, формулы и определение с примерами— концентрация частиц в проводнике; V — объем; Сила Лоренца - основные понятия, формулы и определение с примерами — скорость движения частиц; S площадь поперечного сечения проводники.

  • Заказать решение задач по физике

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Сила Лоренца - основные понятия, формулы и определение с примерами

или

Сила Лоренца - основные понятия, формулы и определение с примерами

Если учесть, то Сила Лоренца - основные понятия, формулы и определение с примерами

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Сила Лоренца - основные понятия, формулы и определение с примерами

Это и есть формула для расчета магнитной составляющей силы Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Магнитная составляющая силы Лоренца
Сила Лоренца - основные понятия, формулы и определение с примерами

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (Сила Лоренца - основные понятия, формулы и определение с примерами≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если
Сила Лоренца - основные понятия, формулы и определение с примерами

Откуда 

Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.

Сила Лоренца - основные понятия, формулы и определение с примерами
Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10-4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10м/с. Найти радиус окружности, по которой движется электрон.

Отсюда 
Сила Лоренца - основные понятия, формулы и определение с примерами

Подставим значения физических величин:

Сила Лоренца - основные понятия, формулы и определение с примерами

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10-2 м.

  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током

Сила Лоренца. Правило левой руки


Сила Лоренца. Правило левой руки

4.2

Средняя оценка: 4.2

Всего получено оценок: 170.

4.2

Средняя оценка: 4.2

Всего получено оценок: 170.

Опыты показывают, что на заряд, движущийся в магнитном поле, со стороны этого поля действует сила, которая называется силой Лоренца. Рассмотрим кратко особенности этой силы.

Открытие силы Лоренца

Магнитное поле не взаимодействует с покоящимися зарядами, и долгое время связь между магнитными и электрическими явлениями не обнаруживалась. Впервые такую связь — влияние проводника с током на стрелку компаса — обнаружил в первой половине XIX в. Х. Эрстед. Обратное явление — влияние поля магнита на проводник с током (а также взаимодействие двух проводников с током) — было открыто вскоре А. Ампером.

Действие магнитного поля на проводник с током

Рис. 1. Действие магнитного поля на проводник с током.

Однако механизм возникновения силы Ампера был изучен лишь к концу XIX в. К этому времени стало ясно, что электрический ток — это упорядоченное движение заряженных частиц. Следовательно, сила Ампера возникает из-за того, что магнитное поле оказывает силовое влияние на движущиеся заряды.

Такая сила была обнаружена Х. Лоренцем. Он же вывел ее формулу.

Особенности силы Лоренца

Поскольку сила Лоренца — это сила, действующая на движущийся заряд в магнитном поле, то ее величина зависит от всех трех значений: от величины заряда, от скорости и от индукции магнитного поля:

$$F_L = qvB sin alpha$$

Однако в формулу входит еще один параметр — угол $alpha$, характеризующий направление силы Лоренца. Это угол между направлением движения носителя заряда (вектором его скорости) и вектором магнитной индукции.

Дело в том, что в отличие от многих других сил, направление силы Лоренца не совпадает ни с направлением движения носителя заряда, ни с направлением на источник магнитного поля, а ее возникновение зависит от взаимного направления магнитного поля и скорости движения заряда. Сила Лоренца перпендикулярна плоскости, образуемой векторами магнитной индукции и скорости движения заряда.

Обратите внимание, что, если направление движения заряда и направление линий магнитной индукции совпадают, то угол $alpha$ равен нулю, и сила Лоренца отсутствует.

Сила Лоренца

Рис. 2. Сила Лоренца.

Правило левой руки

Для силы Лоренца правило левой руки формулируется следующим образом.

Если четыре вытянутых пальца левой руки указывают направление движения положительного заряда, а линии магнитного поля входят в ладонь, «прокалывая» ее, то отставленный большой палец покажет направление силы Лоренца.

Рассмотрим, как работает для определения силы Лоренца правило левой руки. Допустим, электрон движется «на нас», спереди назад, северный магнитный полюс расположен справа, а южный — слева. Куда направлена сила Лоренца?

Правило сформулировано для положительного заряда, например, для протона. Электрон заряжен отрицательно, следовательно, четыре вытянутых пальца левой руки должны быть направлены против его движения — вперед.

Линии магнитного поля направлены от северного к южному полюсу, то есть справа налево. Располагаем левую руку так, чтобы эти линии входили в ладонь. Четыре вытянутых пальца по-прежнему направлены вперед, то есть ладонь лежит на столе «на ребре», четырьмя пальцами вперед.

Отставленный большой палец будет направлен вверх. Таким образом, на электрон будет действовать сила Лоренца, направленная вверх.

Для закрепления правила левой руки можно придумать другие примеры с другими направлениями.

Правило левой руки

Рис. 3. Правило левой руки.

Заключение

Что мы узнали?

На заряд, движущийся в магнитном поле, действует сила Лоренца. Величина этой силы пропорциональная величине заряда, его скорости, индукции магнитного поля и зависит от взаимной направленности этих векторов. Для определения направления силы Лоренца используется правило левой руки.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 170.


А какая ваша оценка?

Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не что иное, как упорядоченное движение электронов, можно предположить, что электромагнитные поля подобным образом действуют также на отдельно взятую заряженную частицу. Это действительно так. На точечный заряд действует сила Лоренца, модуль которой можно вычислить по формуле.

Определение и формула

Хендрик Лоренц доказал, что электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Рассматриваемая сила возникает под действием магнитной индукции. Она перпендикулярна вектору скорости движущейся частицы (см. рис. 1). Необходимым условием возникновения этой силы является движение электрического заряда.

Выводы Лоренца

Рис. 1. Выводы Лоренца

Обратите внимание на расположение векторов (рисунок слева, вверху). Векторы, указывающие направления скорости и силы Лоренца, лежат в одной плоскости XOY, причём они расположены под углом 90º. Вектор магнитной индукции сориентирован вдоль оси Z, перпендикулярной плоскости XOY, а значит, в выбранной системе координат он перпендикулярен к векторам силы и скорости.

По закону Ампера:

По закону Ампера

Учитывая, что

Формулы для расчета

(здесь j – плотность тока, q – единичный заряд, n – количество зарядов на бесконечно малую единицу длины проводника, S – сечение проводника, символом v обозначен модуль скорости движущейся частицы), запишем формулу Ампера в виде:

Вариант записи формулы Ампера

Так, как nSdl общее число зарядов в объёме проводника, то для нахождения силы, действующей на точечный заряд, разделим выражение на количество частиц:

Сила действующая на точечный заряд формула

Модуль F вычисляется по формуле:

модуль силы F

Из формулы следует:

  1. Сила Лоренца приобретает максимальное значение, если угол α прямой.
  2. Если точечный заряд, например, электрон, попадает в среду однородного магнитного поля, обладая некой начальной скоростью, перпендикулярной к линиям электромагнитной индукции, тогда вектор F будет перпендикулярен к вектору скорости. На точечный заряд будет действовать центробежная сила, которая заставит его вращаться по кругу. При этом работа равняется нулю (см. рис.2).
  3. Если угол между вектором индукции и скоростью частицы не равняется 90º, тогда заряд будет двигаться по спирали. Направление вращения зависит от полярности заряда (рис. 3).

Заряженная частица между полюсами магнитов

Рис. 2. Заряженная частица между полюсами магнитов
Ориентация вектора в зависимости от полярности заряда
Рис. 3. Ориентация вектора в зависимости от полярности заряда

Из рисунка 3 видно, что вектор F направлен в противоположную сторону, если знак заряда меняется на противоположный (при условии, что направления остальных векторов остаются неизменными).

Траекторию движения частицы правильно называть винтовой линией. Радиус этой винтовой линии (циклотронный радиус) определяется перпендикулярной к полю составной начальной скорости частицы. Шаг винтовой линии, вдоль которой перемещается частица, определяется составной начальной скорости заряда, вошедшего в однородное магнитное поле. Эта составная направлена параллельно к электромагнитным линиям.

В чём измеряется?

Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10-n Н, где 0<К<1, а n – порядок числа 10.

Когда возникает?

Магнитные поля не реагируют на неподвижный электрический заряд, так же как не действует сила Ампера на обесточенный проводник.

Для возникновения силы Лоренца необходимо выполнить три условия:

  1. У частицы должен быть отрицательный или положительный заряд.
  2. Заряженная частица должна находиться в магнитном поле.
  3. Частица должна быть в движении, то есть вектор v ≠ 0.

Если хотя бы одно из условий не выполняется, сила Лоренца не возникает.

Формула силы Лоренца при наличии магнитного и электрического полей

Рассмотрим случай, когда заряженная частица находится в движении в двух полях одновременно (в электрическом и магнитном), тогда на заряд подействуют две составляющие:

2 составляющие действующие на заряд

Тогда:

Формула силы Лоренца

Поскольку эту формулу вывел Лоренц, то её также называют именем учёного-физика.

Направление силы Лоренца

Мы уже упоминали, что направление возникшей силы Лоренца, кроме магнитных параметров, определяется (в том числе) полярностью заряда. Если бы мы имели возможность наблюдать заряженную элементарную частицу, пребывающую в магнитном поле, то по вектору её перемещения можно было бы определить направление вектора силы F.

Но на практике наблюдать элементарные заряды очень сложно из-за крохотных размеров. Поэтому для определения этого направления применяют способ, известен, как правило левой руки (рис. 4).

Нахождение вектора силы Лоренца

Рис. 4. Нахождение вектора силы Лоренца

Ладонь необходимо развернуть так, чтобы вектор индукции входил в неё. В случае с положительным зарядом, вытянутые пальцы располагают по движению частицы. (для отрицательного заряда пальцы направляют в противоположную сторону). Большой палец под прямым углом указывает искомое направление.

Если известна ориентация вектора скорости частицы, то определить направления остальных векторов можно, применяя правило правой руки, которое понятно из рисунка 5.

Пример применения правила правой руки

Рис. 5. Пример применения правила правой руки

Применение на практике

Практическое значение работ Лоренца мы можем наблюдать в электронно-лучевых трубках. Там поток электронов движется в магнитном поле, изменением которого задаётся траектория электронного пучка.

Данный принцип управления траекторией электронного пучка использовался в старых моделях телевизоров Рис. 6). Электроны под воздействием магнитных полей очерчивали линии на люминофоре кинескопа, рисуя изображения на экране.

Применение учения Лоренца

Рис. 6. Применение учения Лоренца

На рисунке справа изображена схема масспектрографа – прибора для разделения заряженных частиц по величине их зарядов.

Ещё один пример – бесконтактный электромагнитный метод определения скорости течения (вязкости) электропроводных жидкостей. Методика может быть применима к расплавленным металлам, например к алюминию. Бесконтактный способ определения вязкости очень полезен при работе с агрессивными жидкими электропроводными веществами (рис. 7).

Измерение текучести жидких веществ

Рис. 7. Измерение текучести жидких веществ

Работа ускорителей была бы невозможной без участия силы Лоренца. В этих устройствах заряженные частицы удерживаются и разгоняются до околосветовых скоростей благодаря электромагнитам, расположенным вдоль кольцевой трассы.

Мощная электронная лампа – Магнетрон также работает на принципе взаимодействия электронов с магнитными полями, которые направляют высокочастотное излучение в нужном направлении. Магнетрон является основной рабочей деталью микроволновых печей.

На основании действия силы Лоренца создано много других устройств, используемых на практике.

Помещенный в магнитное поле проводник, через который пропущен электрический ток, испытывает воздействие силы Ампера F_A, а её величина может быть подсчитана по следующей формуле:

F_A=Bcdot Icdot lcdot sinalpha                             (1)

где I и l – сила тока и длина проводника, B – индукция магнитного поля, alpha – угол между направлениями силы тока и магнитной индукции. Почему же это происходит?

Сила Лоренца. Движение заряженной частицы в магнитном поле.

Содержание

  • 1 Что такое сила Лоренца — определение, когда возникает, получение формулы
  • 2 Определение направления силы Лоренца с помощью правила левой руки
  • 3 Движение заряженной частицы в магнитном поле
  • 4 Применение силы Лоренца в технике
    • 4.1 Кинескоп
    • 4.2 Масс-спектрограф
    • 4.3 Циклотрон
    • 4.4 Магнетрон
    • 4.5 Магнитное поле Земли

Что такое сила Лоренца — определение, когда возникает, получение формулы

Известно, что электрический ток – это упорядоченное перемещение заряженных частиц. Установлено также, что во время движения в магнитном поле каждая из этих частиц подвергается действию силы. Для возникновении силы требуется, чтобы частица находилась в движении.

Сила Лоренца – это сила, которая действует на электрически заряженную частицу при её движении в магнитном поле. Её направление ортогонально плоскости, в которой лежат векторы скорости частицы и напряженности магнитного поля. Равнодействующая сил Лоренца и есть сила Ампера. Зная ее, можно вывести формулу для силы Лоренца.

Время, требуемое для прохождения частицей отрезка проводника, t = frac {l}{v}, где l – длина отрезка, v – скорость частицы. Суммарный заряд, перенесенный за это время через поперечное сечение проводника, Q = Icdot t. Подставив сюда значение времени из предыдущего равенства, имеем

Q = frac {Icdot l}{v}                             (2)

В то же время F_A=F_Lcdot N, где N – количество частиц, находящееся в рассматриваемом проводнике. При этом N = frac {Q}{q}, где q – заряд одной частицы. Подставив в формулу значение Q из (2), можно получить:

N = frac {Icdot l}{vcdot q}

Таким образом,

F_A=F_Lcdot frac {Icdot l}{vcdot q}

Используя (1), предыдущее выражение можно записать как

Bcdot Icdot lcdot sinalpha = F_Lcdot frac {Icdot l}{vcdot q}

После сокращений и переносов появляется формула для вычисления силы Лоренца

F_L = qcdot vcdot Bcdot sinalpha

С учетом того, что формула записана для модуля силы, ее необходимо записать так:

F_L = |q|cdot vcdot Bcdot sinalpha                             (3)

Поскольку sinalpha = sin(180^{circ} - alpha), то для вычисления модуля силы Лоренца неважно, куда направлена скорость, – по направлению силы тока или против, – и можно сказать, что alpha – это угол, образуемый векторами скорости частицы и магнитной индукции.

Запись формулы в векторном виде будет выглядеть следующим образом:

vec{F_L} = qcdot [vec{v}times vec{B}]

[vec{v}times vec{B}] – это векторное произведение, результатом которого является вектор с модулем, равным vcdot Bcdot sinalpha.

Исходя из формулы (3), можно сделать вывод о том, что сила Лоренца является максимальной в случае перпендикулярности направлений электрического тока и магнитного поля, то есть при alpha = 90^{circ}, и исчезать при их параллельности (alpha = 0^{circ}).

Необходимо помнить, что для получения правильного количественного ответа – например, при решении задач, – следует пользоваться единицами системы СИ, в которой магнитная индукция измеряется в теслах (1 Тл = 1 кг·с−2·А−1), сила – в ньютонах (1 Н = 1 кг·м/с2), сила тока – в амперах, заряд в кулонах (1 Кл = 1 А·с), длина – в метрах, скорость – в м/с.

Определение направления силы Лоренца с помощью правила левой руки

Поскольку в мире макрообъектов сила Лоренца проявляется как сила Ампера, для определения ее направления можно пользоваться правилом левой руки.

Определение направления действия силы Лоренца по правилу левой руки.

Нужно поставить левую руку так, чтобы раскрытая ладонь находилась перпендикулярно и навстречу линиям магнитного поля, четыре пальца следует вытянуть в направлении силы тока, тогда сила Лоренца будет направлена туда, куда указывает большой палец, который должен быть отогнут.

Движение заряженной частицы в магнитном поле

В простейшем случае, то есть при ортогональности векторов магнитной индукции и скорости частицы сила Лоренца, будучи перпендикулярной к вектору скорости, может менять только её направление. Величина скорости, следовательно, и энергия будут оставаться неизменными. Значит, сила Лоренца действует по аналогии с центростремительной силой в механике, и частица перемещается по окружности.

В соответствии со II законом Ньютона (F = mcdot a) можно определить радиус вращения частицы:

N = frac {mcdot v}{qcdot B}.

Необходимо обратить внимание, что с изменением удельного заряда частицы (frac {q}{m}) меняется и радиус.

При этом период вращения T = frac {2cdot picdot r}{v} = frac {2cdot picdot m}{qcdot B}. Он не зависит от скорости, значит, взаимное положение частиц с различными скоростями будет неизменным.

Движение заряженной частицы в однородном магнитном поле.

В более сложном случае, когда угол между скоростью частицы и напряженностью магнитного поля является произвольным, она будет перемещаться по винтовой траектории – поступательно за счет составляющей скорости, направленной параллельно полю, и по окружности под влиянием ее перпендикулярной составляющей.

Применение силы Лоренца в технике

Кинескоп

Кинескоп, стоявший до недавнего времени, когда на смену ему пришел LCD-экран (плоский), в каждом телевизоре, не смог бы работать, не будь силы Лоренца. Для формирования на экране телевизионного растра из узкого потока электронов служат отклоняющие катушки, в которых создается линейно изменяющееся магнитное поле. Строчные катушки перемещают электронный луч слева направо и возвращают обратно, кадровые отвечают за вертикальное перемещение, двигая бегающий по горизонтали луч сверху вниз. Такой же принцип используется в осциллографах – приборах, служащих для изучения переменного электрического напряжения.

Масс-спектрограф

Масс-спектрограф – прибор, использующий зависимость радиуса вращения заряженной частицы от ее удельного заряда. Принцип его работы следующий:

Источник заряженных частиц, которые набирают скорость с помощью созданного искусственно электрического поля, с целью исключения влияния молекул воздуха помещается в вакуумную камеру. Частицы вылетают из источника и, пройдя по дуге окружности, ударяются в фотопластинку, оставляя на ней следы. В зависимости от удельного заряда меняется радиус траектории и, значит, точка удара. Этот радиус легко измерить, а зная его, можно вычислить массу частицы. С помощью масс-спектрографа, например, изучался состав лунного грунта.

Циклотрон

Независимость периода, а значит, и частоты вращения заряженной частицы от её скорости в присутствии магнитного поля используется в приборе, называемом циклотроном и предназначенном для разгона частиц до высоких скоростей. Циклотрон – это два полых металлических полуцилиндров – дуанта (по форме каждый из них напоминает латинскую букву D), помещенных прямыми сторонами навстречу друг другу на небольшом расстоянии.

Циклотрон - применение силы Лоренца.

Дуанты помещаются в постоянное однородное магнитное поле, а между ними создается переменное электрическое поле, частота которого равна частоте вращения частицы, определяемой напряженностью магнитного поля и удельным зарядом. Попадая дважды за период вращения (при переходе из одного дуанта в другой) под воздействие электрического поля, частица каждый раз ускоряется, увеличивая при этом радиус траектории, и в определенный момент, набрав нужную скорость, вылетает из прибора через отверстие. Таким способом можно разогнать протон до энергии в 20 МэВ (мегаэлектронвольт).

Магнетрон

Устройство, называемое магнетроном, который установлен в каждой микроволновой печи, – еще один представитель приборов, использующих силу Лоренца. Магнетрон служит для создания мощного СВЧ-поля, которое разогревает внутренний объем печи, куда помещается пища. Магниты, входящие в его состав, корректируют траекторию движения электронов внутри прибора.

Магнитное поле Земли

А в природе сила Лоренца играет крайне важную для человечества роль. Её наличие позволяет магнитному полю Земли защитить людей от смертоносного ионизирующего излучения космоса. Поле не дает возможности заряженным частицам бомбардировать поверхность планеты, заставляя их менять направление движения.

Определение

Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).

Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:

FЛ=FN

Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля B можно считать неизменным в пределах этого отрезка проводника.

Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:

I=qnvS

Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:

F=|I|ΔlBsinα

Подставляя сюда выражение, полученное для силы тока, получим:

F=|qnvS|ΔlBsinα=|q|nvSΔlBsinα

Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:

N=nSΔlB

Тогда:

F=|q|vNBsinα

Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:

FЛ=FN=|q|vNBsinαN=|q|vBsinα

α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.

Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45o к вектору магнитной индукции.

FЛ=|q|vBsinα=0,005·200·0,3·220,2 (Н)

Направление силы Лоренца

Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:

Если левую руку расположить так, чтобы составляющая магнитной индукции B, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Пример №2. Протон p имеет скорость v, направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?

В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.

Работа силы Лоренца

Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90о. Работа любой силы определяется формулой:

A=Fscosα

Но так как косинус 90о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.

Полная сила, действующая на заряд

При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила Fэл, действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:

Fэл=qE

Следовательно, полная сила, действующая на заряд, равна:

F=Fэл+Fл=qE+|q|vBsinα

Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна E. Какова индукция B магнитного поля?

Прямолинейное движение протона возможно в двух случаях:

  • Вектор E направлен вдоль траектории движения протона. Тогда вектор B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
  • Векторы E, B и v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).

Заряд протона равен модулю заряда электрона — e. Сложим силы, действующие на протон по оси ОУ:

eE+FЛ=0

В скалярной форме:

eEevB=0

Следовательно:

B=Ev

Задание EF17621

Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать формулу для определения силы Лоренца.

3.Выразить модуль вектора магнитной индукции.

4.Определить недостающие величины.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Напряжение на обкладках конденсатора: U = 2160 В.

 Радиус окружности, по которой движется протон в однородном магнитном поле: R = 20 см.

 Масса протона: m = 1,673·10–27 кг.

 Заряд протона: q = 1,6·10–19 Кл.

20 см = 0,2 м

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

По условию задачи протон движется перпендикулярно вектору магнитной индукции. Поэтому синус угла между вектором скорости и вектором магнитной индукции будет равен 1. А протон имеет положительный заряд. Тогда:

FЛ=qvB

Сила Лоренца сообщает протону центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

qvB=mv2R

Отсюда модуль вектора магнитной индукции равен:

B=mv2qvR=mvqR

Энергия заряда, движущегося в электрическом поле, определяется формулой:

W=qU

Но энергию заряда также можно выразить как кинетическую энергию движения:

W=Eк=mv22

Приравняем правые части выражений и получим:

qU=mv22

Отсюда ускорение протона равно:

v=2qUm

Конечная формула для определения модуля вектора магнитной индукции:

B=mvqR=mqR2qUm=2UmqR2

Ответ: 33,6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17600

Протон движется в однородном магнитном поле со скоростью υ, направленной перпендикулярно вектору магнитной индукции B (см. рисунок). Как направлена сила Лоренца, действующая на протон?

а) влево

б) вправо

в) к нам

г) от нас


Алгоритм решения

  1. Определить, каким способом можно найти направлений силы Лоренца, действующей на протон.
  2. Применить правила и найти направление силы Лоренца.

Решение

Силу Лоренца, действующую на заряженную частицу, можно найти с помощью правила левой руки. Для этого мысленно расположим четыре пальца левой руки в сторону, совпадающей с направлением движения положительной частицы (протона). Относительно рисунка пальца будут направлены вниз. Теперь развернем ладонь так, чтобы в нее входили линии магнитной индукции. Теперь отклоним на 90 градусов большой палец. Он будет направлен от плоскости рисунка к нам. Это и есть направление силы Лоренца, действующей на протон.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17749

Протон в однородном магнитном поле движется по окружности. Чтобы в этом поле двигалась по окружности с той же скоростью α-частица, радиус окружности, частота обращения и энергия α-частицы по сравнению с протоном должны:

  1. увеличиться
  2. уменьшиться
  3. не измениться

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Записать формулу для определения силы Лоренца.

2.Установить, от чего зависят перечисленные в таблице физические величины.

3.Определить характер их изменения при изменении заряда.

Решение

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

Если вместо протона взять альфа-частицу, то заряд увеличится вдвое, так как альфа-частица содержит 2 протона. Сила Лоренца прямо пропорционально зависит от величины заряда. Следовательно, она тоже увеличится вдвое. Скорость движения заряда по условию задачи остается постоянной, как и модуль вектора магнитной индукции.

Сила Лоренца будет сообщать альфа-частице центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

|q|vBsinα=mv2R

Отсюда:

|q|Bsinα=mvR

R=mv|q|Bsinα

Заряд альфа-частицы больше заряда протона вдвое. Она также содержит 2 нейтрона, поэтому ее масса примерно в 4 раза больше массы протона. Следовательно, радиус движения альфа-частицы увеличится примерно вдвое.

Частота обращения альфа-частицы связана с ее линейной скоростью формулой:

v=2πRν

Так как скорость остается постоянной, то при увеличении радиуса частота обращения должна уменьшиться.

Энергия альфа-частицы будет больше, чем у протона, вращающегося с той же скоростью. Это связано с тем, что ее кинетическая энергия будет примерно в 4 раза больше (так как во столько раз больше ее масса).

Ответ: 121

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7k

Понравилась статья? Поделить с друзьями: