Как найти предел от показательной функции

Вычисление пределов степенно-показательных функций

Пусть функции

и

заданы на множестве

и функция

на нем положительна. Функция

называется степенно
— показательной
.

Предположим, что

– точка сгущения множества

и существуют конечные пределы

,
,

где
.
Нужно найти

.

Воспользовавшись
тождествами
,
запишем исходное выражение в виде

.

В силу теоремы 6.1
получим

.

При заданных
значениях пределов будем иметь

.

Из проведенного
рассуждения видно, что предположение
о существовании конечных пределов

и

можно отбросить. Действительно, для
нахождения предела выражения

достаточно знать предел произведения

(конечный или бесконечный).

1) Пусть
.
Тогда
.

2) Если
,
то
.

3) Если
,
то
.

Заметим, что
произведение

может оказаться неопределенностью типа
.
Тогда и исходное выражение

представляет собой неопределенность.
Перечислим возникающие здесь
неопределенности.

1) Если
,
то вычисление предела

приводит к неопределенности типа
.

2) Если
,
то вычисление предела

приводит к неопределенности типа
.

3) Если
,
то вычисление предела

приводит к неопределенности типа
.

Во всех указанных
случаях (,

,

)
можно раскрыть неопределенность

в показателе степени, преобразуя ее к
типу

и используя соответствующие эквивалентные
бесконечно малые.

Замечание 8.3.
Приведенные выше рассуждения справедливы
и для вычисления предела степенно-показательной
функции в бесконечно удаленной точке:
.

Пример 8.2.
Вычислить
.

Решение.
Здесь
,
,
поэтому имеем неопределенность типа
.
Преобразуем выражение под знаком
предела:

.

В показателе
степени имеем неопределенность типа
.
Заменой

при

на эквивалентную бесконечно малую

раскрываем ее:

.

Таким образом,

.

Замечание 8.4.
Аналогично доказывается равенство
.

Пределы

,

образуют две формы
одного и того же равенства, которое
также является замечательным
пределом

и часто служат определением числа
.

Задачи к §8

Задача
1.
Вычислить
.

Решение.
Здесь имеем
неопределенность типа
.
Преобразуем числитель дроби к форме
произведения:

.

Затем
заменим бесконечно малую в точке

функцию

эквивалентной бесконечно малой
.

Тогда
получим

.

Ответ:
.

Задача
2.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Преобразуем знаменатель, воспользовавшись
свойствами логарифмической функции, и
выделим в аргументе логарифма слагаемое,
равное 1:

.

Заменим
бесконечно малую в точке

функцию

эквивалентной бесконечно малой
.
Числитель разложим на множители:

.

Тогда
получим:

.

Ответ:
.

Задача
3.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Представим числитель в виде:

.

Затем
заменим его эквивалентной бесконечно
малой в точке

функцией
.

Функцию

в точке

тоже заменим на эквивалентную бесконечно
малую
.

Тогда

.

Ответ:
.

Задача
4.
Вычислить

.

Решение.
Здесь возникает неопределенность типа
.
Представим числитель в виде:

.

Затем
заменим его эквивалентной бесконечно
малой в точке

функцией
.

Преобразуем
знаменатель:

и
заменим его на эквивалентную бесконечно
малую
.
Тогда получим

.

Ответ:
.

Задача
5.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Числитель

можно заменить эквивалентной бесконечно
малой
.

Чтобы
воспользоваться соотношением (8.4),
преобразуем знаменатель:

и
заменим его эквивалентной бесконечно
малой
.

Тогда

.

Ответ:

.

Задача
6.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Чтобы применить к выражению

соотношение (8.3), представим его в виде:

,

и
заменим бесконечно малую функцию

эквивалентной бесконечно малой
.
Знаменатель же представим в виде:

и,
используя соотношения (8.2) и (8.8), заменим
его эквивалентной бесконечно малой
.
Учитывая проведенные выкладки и
соотношение (8.4), получим:

.

Ответ:

.

Задача
7.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя ряд приемов, примененных в
задачах 1–7, получим

.

Ответ:

.

Задача
8.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя ряд приемов, примененных в
задачах 1–7 и формулы приведения для
тригонометрических функций, получим

.

Ответ:

.

Задача
9.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Чтобы применить к числителю соотношение
(8.2), преобразуем его следующим образом:

.

Теперь
числитель согласно соотношению (8.2)
можно заменить эквивалентной бесконечно
малой
.

Преобразуем
знаменатель

.

Заменяем,
используя соотношение (8.1),

эквивалентной бесконечно малой
.

Тогда

.

Ответ:

.

Задача
10.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя приемы, описанные выше, получим

.

.

Ответ:
.

Задача
11.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя теоремы 6.2 и 6.1, получим

.

Получили
неопределенность типа
.
Преобразуем выражение с помощью формул
приведения, затем переходим к эквивалентным
бесконечно малым. В итоге получим

.

Ответ:
.

Задача
12.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Выделим

в основании степени:

.

Заметим,
что

при
.

Справедлива
цепочка равенств

.

Заменяя
логарифм эквивалентной бесконечно
малой согласно соотношению (8.2) и используя
замечание 6.4 для раскрытия неопределенности,
получим


.

Ответ:
.

Задача
13
4.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Введем переменную
.
Если
,
то
.

.

Выделим

в основании степени:

,

тогда

.

Заметим,
что

при
.
Заменим функцию

эквивалентной бесконечно малой
,
будем иметь

.

Используя
теорему 7.3, окончательно получим

.

Ответ:
.

Задача
14.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Поскольку

,

вычислим
сначала
.
Мы имеем дело с неопределенностью типа
.

Воспользовавшись
последовательно соотношениями (8.2) и
(8.1), будем иметь

.

Ответ:
.

Задача
15.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Воспользуемся формулой

.

Вычислим
предел, стоящий в показателе степени.
Для этого требуется раскрыть
неопределенность типа
.
Преобразуем ее в неопределенность типа

и воспользуемся эквивалентностью
бесконечно малых:

.

Ответ:
.

Задача
16.
Вычислить
.

Решение.
Здесь возникает неопределенность типа

.
Преобразуем исходное предельное
выражение

.

Вычислим
предел, стоящий в показателе степени.

.

Ответ:
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Пределы со степенями: показательная, степенная и показательно-степенная функции

Пределы со степенями бывают различных видов в зависимости от положения неизвестной $x$ в пределе. Рассмотрим примеры решений для следующих ситуаций:

  1. Показательная функция
    $$limlimits_{xto a} a^{f(x)} = a^{limlimits_{xto a} f(x)} $$
  2. Степенная функция
    $$ limlimits_{xto a} (f(x))^a = bigg(limlimits_{xto a} f(x) bigg)^a $$
  3. Показательно-степенная функция
    $$limlimits_{xto a} bigg(f(x)bigg)^{g(x)} = limlimits_{xto a} frac{ln(f(x))}{frac{1}{g(x)}} $$
Пример 1
Найти предел показательной функции $limlimits_{xto 2} 2^{frac{x^2-4}{x-2}}$
Решение

Подставив точку $x=2$ в предел получим неопределенность $2^{big(frac{0}{0}big)}$. Итак, перенесем знак предела в показатель и попробуем его вычислить путем разложения числителя по формуле разности квадратов $a^2-b^2 = (a-b)(a+b)$.

$$limlimits_{xto 2} 2^{frac{x^2-4}{x-2}} = 2^{limlimits_{xto 2} frac{(x-2)(x+2)}{x-2}} = $$

Сокращаем числитель со знаменателем на $x-2$ и вычисляем предел степени.

$$ =2^{limlimits_{xto 2} (x+2)} = 2^{2+2} = 2^4 = 16 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$limlimits_{xto 2} 2^{frac{x^2-4}{x-2}} = 16$$
Пример 2
Решить предел степенной функции $limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3$
Решение

Внесем знак предела внутрь скобок, а степень останется при этом снаружи.

$$limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3 = bigg(limlimits_{xto 0} frac{sin x^2}{1-cos x}bigg)^3 = $$

При подстановке точки $x=0$ в предел получаем неопределенность $frac{0}{0}$. Для её устранения воспользуемся таблицей эквивалентностей пределов.

$$sin x^2 sim x^2$$ $$ 1-cos x sim frac{x^2}{2}$$

Подставляем эквивалентные функции в предел и сокращаем $x$.

$$ = bigg(limlimits_{xto 0} frac{x^2}{frac{x^2}{2}}bigg)^3 = bigg(limlimits_{xto 0} frac{2x^2}{x^2} bigg)^3 = 2^3 = 8$$

Ответ
$$limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3 = 8$$
Пример 3
Вычислить предел показательно-степенной функции $limlimits_{xto 0} (tg x)^{sin x} $
Решение

Если подставим $x=0$, то получим предел ноль в степени ноль $(0^0)$. Превратим это в другую неопределенность $(frac{infty}{infty})$ с помощью третьей формулы.

$$limlimits_{xto 0} (tg x)^{sin x} = limlimits_{xto 0} frac{ln (tg ;x)}{frac{1}{sin x}} = frac{infty}{infty} = $$

Используем правило Лопиталя для продолжения решения. По нему, как известно, предел отношения функций равен пределу отношения производных от этих функций.

$$ = limlimits_{xto 0} frac{(ln (tg ;x))’}{(frac{1}{sin x})’} = limlimits_{xto 0} frac{frac{frac{1}{cos^2 x}}{tg ;x}}{-frac{cos x}{sin^2 x}} = $$

Преобразуем числитель в нормальный вид с помощью формулы $tg ; x = frac{sin x}{cos x}$ и выполняем все необходимые сокращения.

$$ = limlimits_{xto 0} frac{frac{1}{sin x cos x}}{-frac{cos x}{sin^2 x}} = -limlimits_{xto 0} frac{sin x}{cos^2 x} = $$

Теперь подставляя точку $x=0$ возможно получить окончательный ответ.

$$ = — frac{sin 0}{cos^2 x} = -frac{0}{1} = 0 $$

Ответ
$$limlimits_{xto 0} (tg x)^{sin x} = 0$$

При вычислении пределов от показательно-степенной функции пользуются либо формулой Вычисление пределов от показательно-степенных функций, либо вторым замечательным пределом.

Пример №1.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Вычисление пределов от показательно-степенных функций Вычисление пределов от показательно-степенных функций, так как

Вычисление пределов от показательно-степенных функций

Пример №1.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Заметим, что Вычисление пределов от показательно-степенных функций, а Вычисление пределов от показательно-степенных функций при Вычисление пределов от показательно-степенных функций. Следовательно, имеется неопределенность вида Вычисление пределов от показательно-степенных функций. Для ее раскрытия воспользуемся вторым замечательным пределом. Получим, что

Вычисление пределов от показательно-степенных функций

так как

Вычисление пределов от показательно-степенных функций

Пример №2.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Вычисление пределов от показательно-степенных функций в силу непрерывности Вычисление пределов от показательно-степенных функций. Вычислим

Вычисление пределов от показательно-степенных функций

Следовательно, Вычисление пределов от показательно-степенных функций.

Пример №3.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Так как Вычисление пределов от показательно-степенных функций, то в данном случае отсутствует неопределенность и

Вычисление пределов от показательно-степенных функций

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Высшая математика краткий курс лекций для заочников

Возможно вам будут полезны эти страницы:

  Рассмотрим два следствия из 2-го замечательного предела, с помощью которых можно найти предел показательной функции, в том числе, предел экспоненты.

    [I.mathop {lim }limits_{x to 0} frac{{{e^x} - 1}}{x} = 1]

    [II.mathop {lim }limits_{x to 0} frac{{{a^x} - 1}}{x} = ln a.]

Эти формулы можно применять и для случаев, когда на месте x стоит f(x), при условии, что при x→0, f(x)→0:

    [(Ia).mathop {lim }limits_{x to 0} frac{{{e^{f(x)}} - 1}}{{f(x)}} = 1,f(x) to 0,]

    [(IIa).mathop {lim }limits_{x to 0} frac{{{a^{f(x)}} - 1}}{{f(x)}} = ln a,f(x) to 0.]

Проиллюстрируем, как найти предел показательной функции, в частности, предел экспоненты, на примерах.

Найти предел функции:

    [1)mathop {lim }limits_{x to 0} frac{{{e^{ - 2x}} - 1}}{{3x}} = left[ {frac{0}{0}} right] = mathop {lim }limits_{x to 0} frac{{frac{{{e^{ - 2x}} - 1}}{{ - 2x}} cdot ( - 2x)}}{{3x}} = ]

 Сокращаем дробь на x. Получаем в числителе выражение вида (Ia), а значит, можем применить это следствие из 2-го замечательного предела:

    [ = mathop {lim }limits_{x to 0} frac{{frac{{{e^{ - 2x}} - 1}}{{ - 2x}} cdot ( - 2)}}{3} = frac{{1 cdot ( - 2)}}{3} =  - frac{2}{3}.]

    [2)mathop {lim }limits_{x to 0} frac{{{e^{3x}} - {a^{7x}}}}{{5x}} = left[ {frac{0}{0}} right] = mathop {lim }limits_{x to 0} frac{{({e^{3x}} - 1) - ({a^{7x}} - 1)}}{{5x}} = ]

Здесь мы вычли и прибавили единицу, поэтому в итоге значение выражения, стоящего в числителе, не изменилось.

    [ = mathop {lim }limits_{x to 0} frac{{frac{{{e^{3x}} - 1}}{{3x}} cdot 3x - frac{{{a^{7x}} - 1}}{{7x}} cdot 7x}}{{5x}} = ]

Выносим общий множитель x за скобки и сокращаем на него: 

    [ = mathop {lim }limits_{x to 0} frac{{x(frac{{{e^{3x}} - 1}}{{3x}} cdot 3 - frac{{{a^{7x}} - 1}}{{7x}} cdot 7)}}{{5x}} = mathop {lim }limits_{x to 0} frac{{frac{{{e^{3x}} - 1}}{{3x}} cdot 3 - frac{{{a^{7x}} - 1}}{{7x}} cdot 7}}{5} = ]

В числителе получили выражения вида (Ia) и (IIа)

    [ = mathop {lim }limits_{x to 0} frac{{1 cdot 3 - ln 7 cdot 7}}{5} = frac{{3 - 7ln 7}}{5}.]

    [3)mathop {lim }limits_{x to 0} frac{{{e^{10x}} - 1}}{{sin 11x}} = left[ {frac{0}{0}} right] = mathop {lim }limits_{x to 0} frac{{frac{{{e^{10x}} - 1}}{{10x}} cdot 10x}}{{frac{{sin 11x}}{{11x}} cdot 11x}} = mathop {lim }limits_{x to 0} frac{{frac{{{e^{10x}} - 1}}{{10x}} cdot 10}}{{frac{{sin 11x}}{{11x}} cdot 11}} = ]

В числителе — выражение вида (Ia), в знаменателе — 1й замечательный предел:

    [ = frac{{1 cdot 10}}{{1 cdot 11}} = frac{{10}}{{11}}.]

Понравилась статья? Поделить с друзьями: