В этих уравнениях — суммы проводимостей ветвей, присоединенных соответственно к узлам 1 и 2;
— сумма проводимостей ветвей, соединяющих эти узлы.
Правая часть каждого из уравнений (1.30) равна алгебраической сумме произведений ЭДС в каждой ветви на проводимость ветви, присоединенной к рассматриваемому узлу. Произведение вида Eg записывается с положительным знаком в том случае, если ЭДС направлена к узлу, для которого записывается уравнение, и с отрицательным, если ЭДС направлена от узла.
Уравнения (1.30) не зависят от выбранных положительных направлений токов в ветвях.
Чтобы подтвердить это положение, рассмотрим опять схему, показанную на рис. 1.16, и для каждого узла примем положительные направления токов от узла.
Для узлов 1 и 2 справедливы уравнения
Принимая, как и раньше, φ3 = 0 напишем выражения для токов ветвей:
для узла 1
для узла 2
После подстановки (1.32) в (1.31) и группировки слагаемых получаются уравнения, совпадающие с (1.30).
Таким образом, можно написать уравнения для определения потенциалов узлов произвольной электрической цепи, не задаваясь положительными направлениями токов в ветвях, при этом потенциал одного из узлов надо принять равным нулю.Если электрическая схема содержит не только источники ЭДС, но и источники тока, то в уравнения, составленные по первому закону Кирхгофа, войдут и токи источников тока. При составлении уравнений вида (1.30) токи заданных источников тока учитываются для каждого узла в виде слагаемых в правой части, причем, как было отмечено выше, с положительными знаками должны быть взяты токи источников тока, направленные к узлу, с отрицательными — от узла.
Например, для узлов 1, 2 и 3 схемы, показанной на рис. 1.17, при φ4 = 0 получим соответственно следующие уравнения:
где
Если электрическая схема имеет в своем составе У узлов (У — любое целое число), а потенциал, например, У-го узла принят равным нулю, то для определения У — 1 потенциалов остальных узлов получается У — 1 уравнений:
или в более общей форме для любого узла р при φу = О
В этих уравнениях, так же как и в уравнениях (1.30), проводимость gpp (с двумя одинаковыми индексами) представляет собой суммарную проводимость ветвей, присоединенных к узлу р, и называется собственной узловой проводимостью этого узла; проводимость gjp = gpj с двумя различными индексами равна сумме проводимостей ветвей, соединяющих между собой рассматриваемые узлы j и р, и называется общей узловой проводимостью этих узлов. Правая часть каждого из уравнений содержит алгебраические суммы произведений ЭДС на соответствующие проводимости для всех ветвей, присоединенных к узлу р, ток Jp равен алгебраической сумме токов всех источников тока, присоединенных к тому же узлу. В свою очередь, ток — узловой ток — равен алгебраической сумме Jp и токов, определяемых источниками ЭДС, которые присоединены к узлу р, при этом следует иметь в виду, что для замкнутых поверхностей сумма всех узловых токов, как это вытекает из первого закона Кирхгофа, равна нулю. К узловым токам можно отнести и уже известные в каких-либо ветвях токи. Проводимости таких ветвей в выражения вида gpp и gjp не входят.
Решив уравнения (1.33), можно определить потенциалы узлов, а зная потенциалы, найти токи во всех ветвях по закону Ома (1.12а).
Если в цепи имеются ветви с идеальными источниками ЭДС и сопротивлениями этих ветвей можно пренебречь, то при составлении уравнений (1.33) получается неопределенность, поскольку проводимости таких ветвей бесконечно большие. Такое затруднение преодолевается путем переноса заданной ЭДС из ветви с нулевым сопротивлением через соответствующий узел в другие ветви, присоединенные к тому же узлу и имеющие конечные значения сопротивлений. В результате такого преобразования токи во всех ветвях заданной схемы не изменяются.Для иллюстрации рассмотрим схему (рис. 1.18, а), у которой сопротивление ветви 2-4 равно нулю, а ЭДС равна Е. Если в каждую ветвь, присоединенную, например, к узлу 2, включить источник напряжения с ЭДС, равной Е и направленной от узла 2 (на рис. 1.18, а эти ЭДС изображены штриховой линией), то токи во всех ветвях останутся без изменения, поскольку разности потенциалов между точками 1‘, 3′, 4’ будут, так же как и в заданной схеме, равны нулю. Теперь потенциалы узлов 2 и 4, очевидно, одинаковы и их можно объединить в одну точку (рис. 1.18,6). Для полученной схемы с тремя узлами (вместо четырех) можно составить два независимых уравнения вида (1.33), из которых определяются искомые потенциалы двух узлов, а затем по закону Ома токи во всех ветвях схемы (рис. 1.18,6), после чего легко найти ток в ветви с сопротивлением r = 0 (рис. 1.18, а) по первому закону Кирхгофа.
Рассмотренную и аналогичные ей задачи можно решить и без предварительного переноса ЭДС через узел в другие ветви. Действительно, если принять в заданной схеме (рис. 1.18, а) φ4 = 0, то потенциал φ2 узла 2, очевидно, будет равен Е. Для определения двух неизвестных потенциалов φ1 и φ3 нужно составить уравнения (1.33), которые полностью совпадут с уравнениями, составленными для тех же узлов эквивалентной схемы (рис. 1.18,6).
Полезно еще рассмотреть применение уравнений (1.33) для частного случая схемы с двумя узлами и произвольным числом ветвей, все или часть которых содержат источники ЭДС. Требуется определить напряжение между этими узлами.Пусть между узлами 1 и 2 включено m ветвей (рис. 1.19). Найдем напряжение U12, записав уравнение (1.33) для первого узла
откуда
где числитель представляет собой алгебраическую сумму произведений ЭДС на проводимость для всех ветвей, содержащих ЭДС (с положительным знаком записываются ЭДС, направленные к узлу 1), а знаменатель — арифметическую сумму проводимостей всех ветвей, включенных между узлами.
Если между узлами 1 и 2 включены еще источники тока, то их значения следует добавить в числитель (1.34), причем со знаком плюс записываются токи, направленные к узлу 1.
Пример 1.3.
На рис. 1.20, к изображена электрическая схема с шестью неизвестными токами; ЭДС источников: Е1 = 6 В, Е2 = 12 В, Е3 = 18 В; сопротивления ветвей: r1 = r2 = r3 = 2 Ом и r4 = r5 = r6 = 6 Ом. Пользуясь методом узловых потенциалов, определить токи во всех ветвях.
Решение.Пусть потенциал точки 0 равен нулю. Запишем уравнения для узлов с потенциалами φ1, φ2 и φ3:
или после подстановки численных значений проводимостей и ЭДС
Решив совместно эти уравнения, найдем искомые потенциалы: φ1 = -9 В; φ2 = 3 В; φ3 = 6 В. Для определения токов в ветвях следует задаться их положительными направлениями. При выбранных положительных направлениях токов (рис. 1.20, а)
Матричные уравнения узловых потенциалов.
Уравнения узловых потенциалов (1.33) можно записать в матричной форме:
где
— квадратная матрица узловых проводимостей схемы;
— матрица-столбец потенциалов узлов и матрица-столбец узловых токов, причем по (1.33а) , при этом алгебраическое суммирование, выполняемое с учетом знаков, распространяется на все ветви с источниками токов и с источниками напряжений, присоединенные к i-му узлу.
Умножив слева уравнение (1.35) на получим уравнение для определения потенциалов узлов схемы в виде
где — матрица, обратная матрице
.
Ниже показано, что матрицу узловых проводимостей можно составить непосредственно по соответствующей схеме цепи по формуле
где А — матрица соединений (узловых проводимостей ветвей схемы) или ее направленного графа; g — диагональная матрица проводимостей ветвей; — транспонированная матрица соединений.
Для иллюстрации применения формулы (1.39) рассмотрим схему рис. 1.20, а, для которой на рис. 1.20,6 построен направленный граф. Поскольку у заданной схемы четыре узла, то для нее можно составить три независимых уравнения, чему и соответствует матрица соединения узловых проводимостей ветвей из трех строк и шести столбцов (для узлов 1, 2, 3):
Диагональная матрица проводимостей ветвей
Произведение матриц А и g
Матрица узловых проводимостей цепи (1.39) получается после перемножения матриц Ag и :
Матрица-столбец потенциалов узлов
Матрица-столбец узловых токов
Пользуясь выражением (1.35), легко получить систему уравнений, приведенную в примере 1.3.
Если матрицу А дополнить четвертой строкой, соответствующей узлу О, то по (1.39) получится неопределенная матрица узловых проводимостей цепи, для которой сумма элементов по всем четырем строкам и четырем столбцам равна нулю; определитель такой матрицы также равен нулю. После вычеркивания любой строки и соответствующего этой строке столбца, например четвертой строки и четвертого столбца, получается определенная квадратная матрица третьего порядка.
Определитель неопределенной матрицы симметричен относительно главной диагонали. Если вычеркнутая строка не соответствует вычеркнутому столбцу, то и в этом случае получается определенная квадратная матрица, соответствующая независимой системе уравнений. Однако определитель такой матрицы уже не имеет симметрии относительно главной диагонали.
Здесь следует особо подчеркнуть, что если принять равным нулю потенциал того же узла схемы, который соответствует вычеркнутой строке матрицы А, то напряжения на всех ветвях схемы определяются через потенциалы узлов по формуле
где положительное направление напряжения Ujp совпадает с положительным направлением тока в ветви. Это непосредственно получается из формул для напряжения на каждой ветви. Например, для схемы по рис. 1.20
Из этого выражения следует
как и должно быть.
ЭДС. Закон Ома для полной цепи
-
Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.
-
Сторонняя сила
-
Закон Ома для полной цепи
-
КПД электрической цепи
-
Закон Ома для неоднородного участка
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.
До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.
Как мы знаем, положительный заряд :
• уходит во внешнюю цепь с положительной клеммы источника;
• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;
• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.
Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила
, направленная против движения заряда (т.е. против направления тока).
к оглавлению ▴
Сторонняя сила
Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).
Рис. 1. Сторонняя сила
Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.
Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы
называется также работой источника тока.
Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом,
— это также работа сторонней силы по перемещению заряда по всей цепи.
Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.
Опыт показывает, что работа прямо пропорциональна перемещаемому заряду
. Поэтому отношение
уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается
:
(1)
Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.
Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.
к оглавлению ▴
Закон Ома для полной цепи
Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.
Пусть источник тока с ЭДС, равной , и внутренним сопротивлением
подключён к резистору
(который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).
Рис. 2. Полная цепь
Наша задача — найти силу тока в цепи и напряжение
на резисторе
.
За время по цепи проходит заряд
. Согласно формуле (1) источник тока совершает при этом работу:
(2)
Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и
. Данное количество теплоты определяется законом Джоуля–Ленца:
(3)
Итак, , и мы приравниваем правые части формул (2) и (3):
После сокращения на получаем:
Вот мы и нашли ток в цепи:
(4)
Формула (4) называется законом Ома для полной цепи.
Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:
Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.
Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:
(5)
Это напряжение является разностью потенциалов между точками и
(рис. 2). Потенциал точки
равен потенциалу положительной клеммы источника; потенциал точки
равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.
Мы видим из формулы (5), что в реальной цепи будет — ведь
умножается на дробь, меньшую единицы. Но есть два случая, когда
.
1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт
.
2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина
неотличима от
, и формула (5) снова даёт нам
.
Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.
к оглавлению ▴
КПД электрической цепи
Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.
Количество теплоты, выделяющееся на полезной нагрузке за время
, обозначим
.
Если сила тока в цепи равна , то
Некоторое количество теплоты выделяется также на источнике тока:
Полное количество теплоты, которое выделяется в цепи, равно:
КПД электрической цепи — это отношение полезного тепла к полному:
КПД цепи равен единице лишь в том случае, если источник тока идеальный .
к оглавлению ▴
Закон Ома для неоднородного участка
Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.
Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.
На рис. 3 показан неоднородный участок, содержащий резистор и источник тока. ЭДС источника равна
, его внутреннее сопротивление считаем равным нулю (если внутреннее сопротивление источника равно
, можно просто заменить резистор
на резистор
).
Рис. 3. ЭДС «помогает» току:
Сила тока на участке равна , ток течёт от точки
к точке
. Этот ток не обязательно вызван одним лишь источником
. Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток
является результатом совокупного действия всех источников, имеющихся в цепи.
Пусть потенциалы точек и
равны соответственно
и
. Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.
Напряжение на нашем участке равно: . За время
через участок проходит заряд
, при этом стационарное электрическое поле совершает работу:
Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):
Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным электрическим полем и сторонними силами источника, целиком превращается в тепло:
.
Подставляем сюда выражения для ,
и закон Джоуля–Ленца:
Сокращая на , получаем закон Ома для неоднородного участка цепи:
(6)
или, что то же самое:
(7)
Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд
от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки
к точке
.
Отметим два следствия выведенных формул (6) и (7).
1. Если участок однородный, то . Тогда из формулы (6) получаем
— закон Ома для однородного участка цепи.
2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене
на
:
Теперь замкнём наш участок, соединив точки и
. Получим рассмотренную выше полную цепь. При этом окажется, что
и предыдущая формула превратится в закон Ома для полной цепи:
Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.
Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от
к
, направлен против действия сторонних сил источника.
Рис. 4. ЭДС «мешает» току:
Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!
Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:
Тогда закон Ома для неоднородного участка примет вид:
(8)
или:
где по-прежнему — напряжение на участке.
Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:
Ток при этом течёт от точки к точке
. Если направление тока совпадает с направлением сторонних сил, то перед
ставится «плюс»; если же эти направления противоположны, то ставится «минус».
Повторим основные понятия и определения по теме «Закон Ома».
Напомним, что напряжение измеряется в вольтах.
Сила тока измеряется в амперах.
Сопротивление измеряется в омах. Эта единица измерения названа в честь Георга Симона Ома, открывшего взаимосвязь между напряжением, сопротивлением цепи и силой тока в этой цепи.
Основные определения, которые мы используем в решении задач:
Источник тока – это устройство, способное создавать необходимую для существования тока разность потенциалов.
Можно сказать, что источник тока действует, как насос. Он «качает» электроны по проводникам, как водяной насос воду по трубам. Эту аналогию можно продолжить. При этом источник тока совершает работу, за счёт химических реакций, происходящих внутри него.
Если эту работу разделить на переносимый источником заряд q (суммарный заряд всех проходящих через источник электронов), то мы получим величину, которую называют электродвижущей силой или сокращённо ЭДС.
Измеряется эта ЭДС, как и разность потенциалов, в вольтах и имеет примерно тот же смысл.
По определению, сила тока равна отношению суммарного заряда электронов, проходящих через сечение проводника, ко времени прохождения. Измеряется сила тока в амперах (А).
Свойство проводника препятствовать прохождению по нему тока характеризуется величиной, которую назвали электрическим сопротивлением – R. Проходя через проводник, электрический ток нагревает его.
Сопротивление измеряют в омах (Ом).
Сам источник тока тоже обладает сопротивлением. Такое сопротивление принято называть внутренним сопротивлением источника r (Ом).
Именно немецкому учёному Георгу Ому удалось установить, от чего может зависеть электрическое сопротивление проводника. Проведя многочисленные эксперименты, Ом сделал следующие выводы:
- Сопротивление проводника тем больше, чем больше его длина.
- Сопротивление проводника тем больше, чем меньше его толщина или площадь поперечного сечения.
Кроме того, Ом выяснил, что каждый материал обладает своим электрическим сопротивлением. Величина, которая показывает, каким сопротивлением будет обладать проводник единичной длины и единичной площади сечения из данного материала, называется удельным электрическим сопротивлением: (Ом*мм2/м). Эта величина справочная. Таким образом, получается, что электрическое сопротивление проводника равно:
Рассмотрим задачи ЕГЭ по теме «Закон Ома» для полной цепи.
Задача 1. На рисунке приведён график зависимости напряжения на концах железного провода площадью поперечного сечения 0,05 мм2 от силы тока в нём. Чему равна длина провода? Ответ дайте в метрах. Удельное сопротивление железа 0,1 Ом*мм2/м.
Решение:
Из закона Ома для проводника или участка цепи без источника следует:
По графику: при
Из формулы сопротивления выражаем и находим длину проводника:
Ответ: 10.
Задача 2. Через поперечное сечение проводников за 8 с прошло 1020 электронов. Какова сила тока в проводнике? Ответ дайте в амперах.
Решение:
По определению силы тока:
Заряд всех электронов: где е — модуль заряда электрона,
Кл.
Тогда
Ответ: 2.
Задача 3. Идеальный амперметр и три резистора общим сопротивлением 66 Ом включены последовательно в электрическую цепь, содержащую источник с ЭДС равной 5 В, и внутренним сопротивлением r=4 Ом. Каковы показания амперметра? (Ответ дайте в амперах, округлив до сотых.)
Решение:
По закону Ома для полной цепи:
Тогда
Ответ: 0,07.
Задача 4. ЭДС источника тока равна 1,5 В. Определите сопротивление внешней цепи, при котором сила тока будет равна 0,6 А, если сила тока при коротком замыкании равна 2,5 А. Ответ дайте в Ом, округлив до десятых.
Решение:
Сила тока короткого замыкания определяется следующим образом:
Отсюда выражаем и находим внутреннее сопротивление источника:
При внешнем сопротивлении, не равном нулю, сила тока в цепи определяется законом Ома для полной цепи:
Отсюда выражаем сопротивление резистора и находим его:
Ответ: 1,9.
Задача 5. На рисунке изображена схема электрической цепи, состоящей из источника постоянного напряжения с ЭДС 5 В и пренебрежимо малым внутренним сопротивлением, ключа, резистора с сопротивлением 2 Ом и соединительных проводов. Ключ замыкают. Какой заряд протечет через резистор за 10 минут? Ответ дайте в кулонах.
Решение:
Выражаем время в секундах: t = 10 минут = 600 с.
Определяем силу тока по закону Ома для полной цепи:
Внутреннее сопротивление пренебрежимо мало, поэтому r = 0.
По определению силы тока:
Отсюда Кл.
Ответ: 1500.
Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «ЭДС. Закон Ома для полной цепи» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Как определить силу электрического тока в цепи?
Электрическая цепь представляет собой совокупность различных элементов, соединенных определенным образом, через которые осуществляется протекание тока и выполняется соответствующая полезная работа. Для обеспечения необходимого функционирования всех устройств, включенных в электрическую схему, необходимо соблюдение ряда параметров, а именно физических характеристик к которым относятся сила тока, напряжение и сопротивление всех элементов цепи. Все эти величины связаны между собой и имеют определенную зависимость согласно закону Ома.
На практике нередко возникает проблема не только как определить силу тока цепи в электрической цепи, но и остальные параметры если точные входные параметры имеются в недостаточном объеме.
Способы определения параметров электрической цепи
Существует два основных варианта как определить силу электрического тока в проводнике, а также остальные характеристики – это косвенный способ вычислений и прямой метод измерения с помощью соответствующих приборов.
Прямой способ определения силы электрического тока
Данный вариант основан на использовании контрольно-измерительного устройства, которое называется амперметр. Свое наименование данный прибор получил от ампера – единицы силы тока принятой в международной системе СИ. В отличие от вольтметра, который позволяет определить разность потенциалов (напряжение), амперметр применяется довольно редко. В домашних и большинстве производственных условий напряжение в сети известно, а зная потребляемую мощность электрических устройств, не составляет особого труда определить остальные параметры, взаимосвязь которых будет показана ниже.
Сложнее ситуация, когда электрическая цепь имеет свои особенности, например, электропроводка автомобиля, которая включает в себя огромное количество различных устройств. Нередко возникает вопрос как определить силу тока в электрической лампочке или другом элементе бортовой системы, чтобы это не отразилось на его безопасной эксплуатации.
Особенностью таких схем является неоднородность параметров электрической цепи на отдельных участках. Вот здесь и пригодится амперметр. Измерение силы тока в электрической лампочке автомобиля представляет собой простую операцию – достаточно в месте ее установки последовательно включить амперметр и считать показания на шкале. Еще одним прибором каким измеряют силу электрического тока является многофункциональный тестер (фото ниже).
С его помощью можно получить данные о напряжении или сопротивлении на отдельных участках любой цепи.
Косвенный метод определения силы электрического тока в проводнике
Данный способ определения силы тока основан на определении силы тока через измерение остальных параметров электрической цепи. Для этого необходимо воспользоваться законом Ома, который описывает зависимость основных параметров относительно друг друга. Данный закон устанавливает прямую зависимость силы тока (I) от разности потенциалов (U), а также обратную связь от сопротивления (R) проводника на определенном участке цепи, что отображается формулой I=U/R.
Таким образом, если возникает такая проблема, как определение силы электрического тока в проводнике при отсутствии амперметра, необходимо воспользоваться вольтметром и омметром. Как правило, данные устройства объединены в едином корпусе, но могут представлять и самостоятельные приборы. Измерив требуемые параметры и подставив их в вышеприведенную формулу получаем искомую величину силы тока.
Необходимо отметить что использование многофункционального тестера значительно облегчает нахождение всех параметров электрической цепи. Единственное на что требуется обратить внимание при определении силы тока в любом элементе электрической схемы с помощью тестера или амперметра – это выбор правильного диапазона измерений. При отсутствии предварительных данных, измерения необходимо начинать при выставлении максимальных величин и постепенно их уменьшать до отображения достоверных данных.
Взаимосвязь основных параметров электрической цепи
Как отмечалось выше электрическая цепь представляет собой совокупность элементов и устройств выполняющие определенную работу при перемещении по ней заряженных частиц. Каждый элемент обладает своем сопротивлением, что влияет на величину силы тока и напряжения на выходе.
Взаимосвязь этих значений как раз-таки подчиняется закону Ома!
Но определение силы электрического тока в проводнике возможно и через потребляемую мощность устройства (Р). Формула расчета мощности выглядит следующим образом:. Для примера рассмотрим проблему как определить силу тока в электрической лампочке, зная ее мощность. Исходные данные – сеть с напряжением 220 вольт, мощность лампы 100 Вт., следовательно, сила тока в электролампе будет равна 0,45А (100Вт/220В). Аналогично можно определить данный параметр для всех элементов электрической цепи.
При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.
Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.
Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов).
Метод узловых потенциалов примеры решения задач
Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.
Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.
Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4 φ4 = 0.
Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.
В общем виде система имеет вид:
Использованные в этой системе уравнений буквенно-цифровые обозначения
имеют следующий смысл:
– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае
– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае
– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае
– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:
– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:
Аналогично находятся и остальные проводимости:
J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае
Аналогично
В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:
Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:
В результате получены следующие значения потенциалов в узлах цепи:
Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.
В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что
Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.
Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.
Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.