4. Объясните полученный результат.
2.2.3. О признаках равенства
треугольников.
В связи с тем, что
определение равенства треугольников достаточно сложное для проверки, возникает
необходимость в признаках равенства, то есть в возможности определить равенство
треугольников по меньшему количеству элементов. Но простым перебором можно
получить только признак равенства по трем сторонам. Остальные признаки можно
получить, заменив равенство сторон равенством противолежащих углов.
2.2.4. Задачи на построение треугольников по трем элементам не включены
в текст учебника, но их необходимо рассматривать на уроках, для лучшего усвоения
признаков равенства треугольников.
Глава 3. Теория
параллельных прямых.
В начале изучения курса геометрии вы познакомились с разными
случаями взаимного расположения геометрических фигур на плоскости. Нерассмотренным
остался случай отношения прямых. Начнем с изучения взаимного расположения двух
прямых.
3.1. Взаимное расположение двух прямых.
В каком отношении могут находиться две прямые?
Две прямые на плоскости могут иметь одну общую точку
(рис.3.1). В этом случае прямые принято называть пересекающимися.
Пересекающиеся прямые – это общий случай взаимного
расположения прямых на плоскости. В этом случае ещё говорят, что прямые
находятся в общем положении.
Возможны ли другие случаи взаимного расположения двух
прямых?
Да, и мы можем сделать два предположения: 1. Две прямые на
плоскости не могут иметь больше одной общей точки; 2. Две прямые на плоскости могут
не иметь общих точек.
Предлагаем эти предположения обсудить во время групповой
дискуссии.
Для простоты дальнейших изложений примем две аксиомы.
А1. Две точки однозначно определяют прямую.
То есть мы не будем различать совпадающие прямые.
А2. Существуют прямые на плоскости, которые
не имеют общих точек.
Две прямые на плоскости, не имеющие общих точек, принято
называть непересекающимися (рис.3.2).
Непересекающиеся прямые – это особый случай взаимного
расположения прямых на плоскости.
Рис.3.1 |
Рис.3.2 |
Как вы думаете, сколько можно провести прямых,
пересекающихся с данной прямой, и не пересекающихся с данной прямой?
Вопрос. А сколько можно провести прямых через одну
точку так, чтобы они пересекались с данной прямой? Сколько прямых, непересекающихся
с данной, можно провести через точку, не лежащую на этой прямой?
Рассмотрим произвольную прямую a
и точку M, не лежащую на ней (рис.3.5). Через
точку M проведём произвольную прямую. Сколько
таких прямых можно провести? Таких прямых существует бесконечно много.
Рис.3.3
Мы видим, что среди этих прямых много прямых, пересекающихся
с прямой а. А сколько прямых, непересекающихся с прямой а проходит
через точку М? Возможные ответы: одна, ни одной, несколько. На рис.3.3 видно,
что, по крайней мере, одна такая прямая существует. Но сколько таких прямых –
мы сказать не можем.
Но действительно ли нужно отвечать на этот вопрос?
Рассмотрим два случая такого взаиморасположения трех прямых,
при котором без ответа на этот вопрос возникает противоречие.
1) Прямые а и b не пересекаются. Прямая c
пересекает прямую a. Пересекает ли прямая c прямую b (рис.3.4)? Может и не пересечь, если через одну точку
можно провести больше одной прямой, непересекающейся с данной. Но на рисунке видно,
что прямые с и b пересекутся.
Прямая − одно из фундаментальных понятий евклидовой геометрии.
Прямая не может быть определена в терминах ранее определенных объектов.
Прамая бесконечна, она не имеет ни начала ни конца.
Прямая обычно обозначается маленькой латинской буквой. Прямую можно обозначить также через две разные точки на этой прямой (Рис.1):
1. Через любую точку можно провести бесконечно много прямых.
2. Через любые несовпадающие точки можно провести только одну прямую.
3. Две несовпадающие прямые на плоскости или пересекаются, или параллельны.
4. Из трех разных точек, лежащих на данной прямой, только одна может лежать между двумя другими точками.
На Рис.2 точка B лежит между точками A и C.
5. Есть точки, лежащие на прямой и не лежащие на ней.
На Рис.3 точки A и B лежат на прямой a, а точка C не лежит на прямой a. Можно сказать также, что точки A и B принадлежат прямой a, а точка C не принадлежит прямой a. Или же прямая a проходит через точки A и B и не проходит через точку C.
Для записи принадлежности точки к прямой используют символ ∈. Запись ( small A∈ a) обозначает, что точка A принадлежит прямой a. Чтобы указать, что точка не принадлежит к прямой используют символ ( small ∉. ) Запись ( small C∉ a) обозначает, что точка C не принадлежит прямой a.
6. В трехмерном пространстве прямые или пересекаются, или параллельные, или скрещиваются.
7. Если две любые точки прямой лежат на плоскости, то все точки этой прямой лежат на этой плоскости.
Прямая на чертеже может быть задана изображением прямой, точкой и направлением, отрезком прямой и двумя пересекающимися плоскостями.
Прямоугольной проекцией отрезка в общем случае является отрезок (второе свойство центрального и параллельного проецирования). На чертеже прямая m (Рисунок 2.1, а) и отрезок АВ (Рисунок 2.1, б) произвольно наклонены к плоскостям проекций. Такие прямые называются прямыми общего положения.
Прямая, не параллельная ни одной из плоскостей проекций, называется прямой общего положения .
Длина прямоугольной параллельной проекции отрезка общего положения всегда меньше длины самого отрезка.
Прямая, параллельная или перпендикулярная какой-либо плоскости проекций, называется прямой частного положения .
Прямые, параллельные плоскостям проекций, называются прямыми уровня .
Прямая, параллельная горизонтальной плоскости проекций, называется горизонтальной прямой или горизонталью (Рисунок 2.2).
Если отрезок параллелен плоскости проекций π1, то его фронтальная проекция А2В2 параллельна оси проекций π1/π2, а горизонтальная проекция отрезка А1В1 определяет истинную величину АВ:
Прямая, параллельная фронтальной плоскости проекций, называется фронтальной прямой или фронталью (Рисунок 2.3).
Если отрезок параллелен плоскости проекций π2, то его горизонтальная проекция параллельна оси проекций π2/π1, а фронтальная проекция отрезка C2D2 определяет истинную величину CD.
Прямая GH, параллельная профильной плоскости проекций, называется профильной прямой (Рисунок 2.4).
Прямые, перпендикулярные плоскостям проекций, называются проецирующими .
Прямая EF, перпендикулярная горизонтальной плоскости проекций, называется горизонтально-проецирующей (Рисунок 2.4).
Прямая KL, перпендикулярная фронтальной плоскости проекций, называется фронтально-проецирующей (Рисунок 2.4).
Прямая MN, перпендикулярная профильной плоскости проекций, называется профильно-проецирующей (Рисунок 2.4).
Метод прямоугольного треугольника позволяет по эпюру отрезка прямой общего положения определить его истинную величину.
Рассмотрим положение отрезка АВ относительно горизонтальной плоскости проекций π1 (Рисунок 2.5).
ВК=ВВ1–АА1=Δ1 – второй катет, равный разности расстояний от концов отрезка АВ до плоскости π1 (то есть, разности координат Z точек А и В);
АВ – гипотенуза ΔАКВ – истинная величина.
При известных координатах концов отрезка общего положения можно на эпюре определить его истинную величину (Рисунок 2.5, б) на любой из плоскостей проекций.
Рисунок 2.6 – Определение истинной длины и угла наклона отрезка AB к плоскости проекций π2
Рисунок 2.7 – Принадлежность точки прямой
Точка С принадлежит отрезку АВ (Рисунок 2.7), так как:
Если точка делит отрезок в каком-либо отношении, то проекции этой точки делят одноименные проекции данного отрезка в том же отношении:
Разделить точкой К отрезок EF в соотношении EK:KF=1:3 (Рисунок 2.8)
Рисунок 2.8 – Деление отрезка в заданном отношении
Решение:
- Проведём произвольную прямую из любого конца любой проекции отрезка, например, Е2.
- Отложим на этой прямой от точки Е2 равные отрезки, количество которых равно сумме чисел, составляющих дробь (в нашем примере 1+3=4).
- Соединим последнюю точку 4 с другим концом фронтальной проекции отрезка – точкой F2.
- Из точки 1 проведём прямую, параллельную прямой (4—F2) до пересечения с проекцией E2F2, таким образом будет найдена фронтальная проекция искомой точки К2.
- Горизонтальную проекцию точки К1 получим путём построения линии проекционной связи до пересечения её с горизонтальной проекцией отрезка.
Упражнение
Определить принадлежность точки С отрезку прямой АВ (Рисунок 2.9).
Рисунок 2.9а – Решение упражнения 2. Способ 1.
Рисунок 2.9б – Решение упражнения 2. Способ 2.
Ответ: точка С не принадлежит отрезку АВ, так как не выполняется условие принадлежности точки прямой.
2.5. Следы прямой
След прямой – точка пересечения прямой с плоскостью проекций.
Прямая общего положения в общем случае может быть три следа:
- горизонтальный след M1– точка пересечения прямой с горизонтальной плоскостью проекций π1;
- фронтальный след N2– точка пересечения прямой с фронтальной плоскостью проекций π2;
- профильный след L3 – точка пересечения прямой с профильной плоскостью проекций π3.
След прямой является точкой частного положения, поскольку он принадлежит плоскости проекций, следовательно, след прямой всегда совпадает с одной из своих проекций:
- горизонтальный след совпадает со своей горизонтальной проекцией M≡M1,
- фронтальный – с фронтальной проекцией N≡N2,
- профильный – с профильной проекцией L≡L3 (Рисунок 2.10).
Рисунок 2.10 – Построение следов отрезка прямой АВ
Построим следы отрезка АВ с плоскостями проекций (Рисунки 2.10, 2.11).
Для построения горизонтального следа прямой АB необходимо:
- Продолжить фронтальную проекцию прямой АB до пересечения с осью X, точка пересечения М2 является фронтальной проекцией горизонтального следа;
- Из точки М2 провести линию проекционной связи до его пересечения с горизонтальной проекцией прямой АB или её продолжением. Точка пересечения М1 и будет являться горизонтальной проекцией горизонтального следа, которая совпадает с самим следом М.
Чтобы построить фронтальный след отрезка АB прямой, необходимо:
- Продолжить горизонтальную проекцию прямой АB до пересечения с осью X, точка пересечения N1 является горизонтальной проекцией фронтального следа;
- Из точки N1 провести линию проекционной связи до его пересечения с фронтальной проекцией прямой АB или ее продолжением. Точка пересечения N2 и будет являться фронтальной проекцией фронтального следа, которая совпадает с самим следом N.
Ниже приводим алгоритм построения следов отрезка прямой АВ:
Рисунок 2.11 – Эпюр построения следов отрезка прямой АВ
Прямая, параллельная одной из плоскостей проекций, не имеет следа на плоскости, которой она параллельна, и пересекает только две плоскости. Прямая, параллельная двум плоскостям проекций (проецирующая прямая), имеет только один след, совпадающий с проекцией прямой на плоскость, к которой она перпендикулярна.
2.6. Взаимное расположение прямых
Две прямые в пространстве могут быть:
- параллельными;
- пересекающимися;
- скрещивающимися.
Параллельные прямые – прямые, пересекающиеся в несобственной точке.
Если прямые в пространстве параллельны, то их ортогональные проекции взаимно параллельны, или сливаются, или представляют собой точки, на одной из плоскостей проекций (Рисунок 2.12).
Рисунок 2.12 – Параллельные прямые
Пересекающиеся прямые – прямые, имеющие одну общую точку.
Если прямые в пространстве пересекаются, то на чертеже одноименные проекции прямых пересекаются, при этом проекции точки пересечения прямых лежат на одной линии проекционной связи и делят соответствующие проекции отрезков прямых в равных отношениях (Рисунок 2.13).
Рисунок 2.13 – Пересекающиеся прямые
Скрещивающиеся прямые – прямые, не имеющие общих точек и не удовлетворяющие признакам параллельных и пересекающихся прямых (Рисунок 2.14).
Рисунок 2.14 — Скрещивающиеся прямые
2.7. Проекции плоских углов
Угол между двумя пересекающимися прямыми проецируется в истинную величину, если плоскость этого угла параллельна плоскости проекций.
Рисунок 2.15
По проекциям (Рисунок 2.15) нельзя судить о величине угла между двумя прямыми. На чертежах видно, что острый угол может проецироваться в виде тупого, а тупой – в виде острого.
Теорема о проецировании прямого угла в частном случае
Теорема . Если одна из сторон прямого угла параллельна какой-либо плоскости, а другая – этой плоскости не перпендикулярна, то на эту плоскость прямой угол проецируется в виде прямого угла (Рисунок 2.16, а и б).
Обратная теорема . Если одна из двух пересекающихся прямых параллельна некоторой плоскости проекций и проекции этих прямых на эту же плоскость пересекаются под прямым углом, то в пространстве эти прямые взаимно перпендикулярны.
Рисунок 2.16 – Проецирование прямого угла
Дано: две пересекающиеся под прямым углом прямые АВ ⊥ ВС,
2.8. Задачи для самостоятельного решения
1. Построить отрезок прямой АВ // π1, равный 35 мм и наклонённый к π2 под углом 25° (Рисунок 2.17).
Рисунок 2.17
2. Построить отрезок прямой CD по координатам его концов С (20; 15; 30), D (70; 40; 15) и определить истинную величину отрезка и углы наклона его к плоскостям проекций π2 и π1.
3. Постройте проекции отрезков частного положения, расположенных под углом 30° к плоскости проекций π1 и 45° — к плоскости проекций π2.
4. Определите взаимное положение прямых и постройте пересечение прямых АВ и CD прямой EF//π2/π1 (Рисунок 2.18).
Планиметрия — формулы, определение и вычисление с примерами решения
Содержание:
В окружающем нас мире существует много разнообразных предметов, каждый из которых обладает определенным набором характеристик: размеры, форма, цвет, твердость, химический состав и т.д. Например, круг радиуса 10 см можно вырезать из металлического листа или из бумаги. Понятно, что эти предметы будут иметь как одинаковые характерные свойства, так и различные. Что касается формы и количественных характеристик, то они являются одинаковыми фигурами — два круга радиуса 10 см. Школьные дисциплины, изучающие пространственную форму и количественные характеристики предметов и явлений материального мира, — алгебра и геометрия -относятся к математическим.
Геометрия — это наука о пространственной форме и количественных характеристиках предметов реального мира.
Исследованием прочих характеристик предметов окружающей среды занимаются другие дисциплины. Если в процессе изучения предмета не учитывать никаких других его характеристик, кроме пространственной формы и размеров, получим абстрактный объект, который называют геометрической фигурой.
Слово «геометрия» — греческого происхождения и в переводе означает землеизмерение. Геометрия, которую изучают в школе, называется евклидовой по имени древнегреческого ученого Евклида (см. рубрику «Из летописи геометрии» на с. 45). Школьная геометрия состоит из двух частей: планиметрии и стереометрии. С планиметрией вы ознакомились в основной школе, а стереометрию будете изучать в старших классах.
Что такое планиметрия
Планиметрия — это раздел геометрии, который изучает геометрические фигуры на плоскости (рис. 1.1).
Стереометрия — это раздел геометрии, который изучает фигуры в пространстве.
Геометрические фигуры — это абстрактные фигуры, которые напоминают окружающие предметы. Чтобы отличить одну геометрическую фигуру (или понятие) от другой, их описывают в виде утверждения, которое называют определением.
Определение — это утверждение, которое описывает существенные свойства предмета (понятия), позволяющие отличить его от других. Как выяснилось, определить все геометрические фигуры невозможно. Например, точка, прямая, плоскость. Их называют неопределяемыми, начальными (с которых все начинается), или, как принято в планиметрии, основными.
Логическое построение планиметрии можно описать как последовательность следующих этапов.
- Выбор геометрических понятий, которые называют основными (абстрактных фигур).
- Формулирование основных свойств для этих геометрических понятий с помощью утверждений, которые считаются истинными без доказательств.
- Построение других понятий, определяемых через основные понятия и их свойства, и утверждений, истинность которых устанавливается путем доказательств, опираясь на известные.
Такое построение науки называют аксиоматическим (греч. «аксиома», что в переводе означает уважение, авторитет, неопровержимая истина). Аксиома — это утверждение, принимающееся как истинное без доказательств. Основные свойства простейших геометрических фигур, которые считаются истинными без доказательства и являются исходными при доказательстве других свойств, называют аксиомами геометрии.
Для школьного курса планиметрии определены:
- Основные геометрические фигуры (понятия) — точка, прямая. (Точка — простейшая геометрическая фигура. Все другие геометрические фигуры состоят из точек, в том числе и прямая.)
- Аксиомы планиметрии — это основные свойства простейших геометрических фигур.
- Система определений планиметрических фигур и теорем, выражающих их свойства.
К определяемым понятиям в геометрии относят отрезок, луч, треугольник и т. п., поскольку для них существуют объяснения «что это такое?». Определяемых понятий много. Приведем пример.
Пусть на прямой а заданы две различные точки Аи В. Фигуру, состоящую из всех точек прямой а, которые лежат между точками А и В, включая точки А и В, называют отрезком (рис. 1.2). Точки А и В называются концами отрезка, а все другие точки — внутренними точками отрезка. Таким образом, отрезок — определяемое понятие.
Аксиомы планиметрии
С целью установления правильности утверждения о свойствах той или иной геометрической фигуры прибегают к некоторым рассуждениям. Среди них есть такие, которые требуют доказательства (теоремы, задачи). Утверждение, истинность которого устанавливается путем доказательства и которое используется для доказательства других утверждений, называют теоремой.
Теорема состоит из: условия и вывода. Для доказательства теорем в школьном курсе геометрии в основном используют следующие методы:
- а) по структуре доказательства — прямой (аналитический и синтетический), от противного;
- б) по использованию математического аппарата — алгебраический, координатный, векторный и др.
Все рассуждения при доказательстве теорем произвольным методом основываются на аксиомах и известных доказанных фактах. Т.е. чтобы доказать теорему, разрешается пользоваться только основными свойствами простейших фигур (аксиомами) и свойствами, доказанными ранее (теоремами). Никакими другими свойствами фигур, даже если они представляются очевидными, пользоваться нельзя. Например, доказывая теоремы, можно использовать рисунки. Однако это лишь геометрическая модель содержания текста, выраженного словами, поэтому делать по рисунку выводы о свойствах фигур не разрешается.
Итак, геометрия, как и другие математические науки, строится по такой схеме: сначала следует ввести основные понятия, задать аксиомы (правила игры), а потом, опираясь на аксиомы, выводить другие факты (проводить игру по определенным правилам, не противоречащим друг другу).
Опорные факты курса планиметрии
Данный параграф предназначен для повторения курса планиметрии. Необходимость в нем обусловлена тем, что многие вопросы планиметрии на первом этапе обучения в школе рассматриваются несколько поверхностно. В следующих классах уровень изучения материала повышается, а вернуться и углубить пройденное удается не всегда. Поэтому мы систематизируем и обобщим основные сведения по планиметрии, условно разбив их на блоки: взаимное расположение прямых на плоскости; окружность и круг; многоугольники; треугольник и его элементы; выпуклые четырехугольники.
Взаимное расположение прямых на плоскости
Две прямые на плоскости могут пересекаться только в одной точке или не пересекаться, т.е. быть параллельными. При пересечении двух прямых образуются смежные и вертикальные углы. Смежные углы дополняют друг друга до 180°, а вертикальные — равны. Меньший из них называется углом между прямыми. На рисунке 1.3 изображены две прямые и
, которые пересекаются в точке
, образуя смежные и вертикальные углы:
и
,
и
— вертикальные;
- и , и, и , и — смежные.
Если один из углов при пересечении двух прямых равен 90°, то все другие углы — смежные и вертикальные — также равны 90°. Такие прямые называют взаимно перпендикулярными. Записывают, например, или .
Расстоянием от точки до прямой (рис. 1.4) называют длину отрезка , перпендикулярного к прямой а, где точка — основание перпендикуляра. Расстояние от точки до любой точки прямой , отличной от точки , больше расстояния от точки до прямой . Т.е. любой отрезок , где -точка прямой , отличная от точки , длиннее отрезка .
Две различные прямые и , лежащие в одной плоскости, называются параллельными, если они не имеют ни одной общей точки. Коротко записывают . Если прямые не параллельны (), то они пересекаются ().
Вследствие пересечения двух прямых третьей прямой образуется восемь углов (рис. 1.5) (прямые а и Ь могут пересекаться, но прямая с через точку их пересечения не проходит):
- внутренние односторонние (углы 4 и 5, 3 и 6);
- внутренние разносторонние (углы 3 и 5, 4 и 6);
- внешние односторонние (углы 1 и 8, 2 и 7);
- внешние разносторонние (углы 1 и 7, 2 и 8);
- соответствующие (углы 1 и 5, 2 и 6, 8
Признаки параллельности прямых:
- Если при пересечении двух прямых и третьей прямой внутренние (или внешние) разносторонние углы равны или внутренние односторонние в сумме составляют 180°, то и параллельны.
- Две прямые, параллельные третьей, параллельны между собой.
Окружность и круг
Кругом с центром и радиусом называют фигуру, образованную всеми точками плоскости, которые отдалены от точки на расстояние, не больше чем . Круг ограничен окружностью. Окружностью с центром и радиусом называют множество точек плоскости, отдаленных от точки на расстояние, равное (рис. 1.7, а).
Отрезки, которые соединяют центр с точками окружности и имеют длину , называют радиусами окружности (круга).
Части круга, на которые он делится двумя радиусами, называют круговыми секторами (рис. 1.7, б).
Хорда — отрезок, который соединяет две точки окружности , — делит круг на два сегмента, а окружность — на две дуги. Диаметр — наибольшая хорда окружности .
Через три точки, не лежащие на одной прямой, проходит единственная окружность. Диаметр, перпендикулярный к хорде, делит пополам эту хорду и обе дуги, которые стягиваются ею, и наоборот, если диаметр проведен через середину хорды, то он перпендикулярен этой хорде и делит пополам дугу, которую она стягивает (рис. 1.8, а).
Дуги, которые находятся между параллельными хордами, равны между собой. Равные дуги стягиваются равными хордами, и наоборот, равные хорды стягивают равные дуги.
Равные хорды одинаково отдалены от центра, и наоборот, хорды, одинаково отдаленные от центра, равны между собой. Большая из двух хорд меньше отдалена от центра, и наоборот, из двух хорд больше та, которая меньше отдалена от центра (рис. 1.8, а).
Каким может быть взаимное расположение прямой и окружности?
Рассмотрим окружность с центром и прямую (рис. 1.8, б). Из точки проведем перпендикуляр к прямой . Пусть -основание этого перпендикуляра. Возможны три случая: точка находится вне окружности , на окружности и внутри окружности . В каждом из этих случаев окружность и прямая либо не имеют общих точек, либо имеют одну общую точку ( — касательная к окружности), либо имеют две общие точки ( — секущая).
Прямая, проходящая через точку окружности, является касательной к окружности только тогда, когда она перпендикулярна радиусу, проведенному в эту точку. Если касательная параллельна хорде окружности, то точка касания делит пополам дугу, которую стягивает хорда (рис. 1.8, в; ).
Если из одной точки к окружности проведены две касательные, то отрезки этих касательных (от точек касания до данной точки) равны между собой, а луч, проведенный через данную точку и центр окружности, делит пополам угол между касательными (рис. 1.8, в; ).
Вписанным углом в окружность называют угол, образованный двумя хордами, выходящими из одной точки на окружности (рис. 1.9). Вписанный угол измеряется половиной дуги, на которую он опирается. Вписанные углы, опирающиеся на одну дугу, между собой равны. Вписанный угол, который опирается на полуокружность (на диаметр), — прямой.
Угол с вершиной в центре окружности называется центральным углом. Центральный угол, стороны которого пересекают окружность в тех же точках, что и вписанный, называется соответствующим центральным углом вписанного (рис. 1.10). Мера вписанного угла равна половине меры соответствующего центрального или дополняет его половину до 180°. Угол, образованный хордой и касательной, которая проходит через конец хорды, измеряется половиной дуги, находящейся между сторонами этого угла (рис. 1.11; ). Угол, образованный двумя хордами, пересекающимися внутри окружности, измеряется полусуммой двух дуг, одна из которых находится между сторонами этого угла, а другая — между продолжениями этих сторон.
Угол, образованный двумя касательными, называется описанным (рис. 1.8, в; ). Описаный угол измеряется полуразностью двух дуг, которые находятся между его сторонами .
Длину окружности находят по формуле: , где — диаметр окружности, — радиус окружности; а длину дуги окружности — по формуле: , где — градусная мера соответствующего центрального угла. Площадь круга: ; площадь кругового сектора: , где — радиус круга, — градусная мера соответствующего центрального угла. Площадь сегмента: , где — градусная мера центрального угла, который содержит дугу этого кругового сегмента, а — площадь треугольника с вершинами в центре круга и на концах радиусов, ограничивающих соответствующий сектор. Знак «-» следует использовать, когда 180°.
Многоугольники
Многоугольником называется простая замкнутая ломанная. Например, многоугольником называется линия, полученная путем последовательного соединения п различных точек отрезками таким образом, чтобы каждая точка была соединена со следующей, а последняя — с первой (рис. 1.12). Различают многоугольники плоские и неплоские.
Плоский многоугольник — часть плоскости, ограниченная многоугольником.
Многоугольник может быть выпуклым или невыпуклым.
Многоугольник выпуклый, если он лежит в одной полуплоскости относительно каждой прямой, проходящей через две его соседние вершины (рис. 1.12, б, г, д).
Многоугольники называют равными, если при наложении они совмещаются. Для выпуклого -угольника сумма внутренних углов равна , а количество диагоналей любого-угольника равно . Если все стороны выпуклого многоугольника равны между собой и все углы также равны между собой, то его называют правильным (рис. 1.12, д). Если все вершины многоугольника лежат на некоторой окружности, он называется вписанным в эту окружность (рис. 1.13, а). Если все стороны многоугольника касаются некоторой окружности, он называется описанным вокруг окружности (рис. 1.13, б). По количеству сторон -угольника ему дают название. Например, треугольник , четырехугольник , пятиугольник и т.д.
Как построить правильный -угольник?
Если окружность разделить на равных частей и точки последовательно соединить отрезками, то получим правильный -угольник, вписанный в окружность (рис. 1.14).
Если окружность разделить на равных частей и через точки деления провести касательные к окружности, то отрезки этих касательных образуют правильный -угольник, описанный вокруг окружности (рис.1.15).
Вокруг каждого правильного многоугольника можно описать окружность или в каждый правильный многоугольник можно вписать окружность.
В правильном многоугольнике центры описанной и вписанной окружностей совпадают. Общий центр описанной и вписанной окружностей называется центром правильного многоугольника. Радиус вписанной окружности называют апофемой правильного многоугольника.
Угол, образованный двумя радиусами, проведенными через смежные вершины правильного многоугольника, называется его центральным углом. Все центральные углы правильного многоугольника равны между собой и составляют , где — количество сторон (углов) многоугольника.
В правильном -угольнике, как и в произвольном -угольнике, сумма всех углов (внутренних) составляет . Поэтому каждый его угол определяется по формуле .
Окружность, вписанная в правильный многоугольник, касается его сторон в их серединах. Центр окружности, вписанной в правильный многоугольник, является точкой пересечения серединных перпендикуляров его сторон (рис. 1.15).
Если сторона правильного многоугольника равна , радиус вписанной в него окружности — , а радиус описанной вокруг него окружности — , то между ними существует связь, которая выражается формулами:
Простейшим многоугольником является треугольник. В любой треугольник можно вписать окружность, причем только одну. На рисунке 1.16, изображена окружность с центром , вписанная в треугольник , — радиус. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис и находится внутри треугольника. Поскольку площадь треугольника находят по формуле , где — полупериметр треугольника, то отсюда , где — стороны треугольника. Центр окружности, вписанной в треугольник, равноудален от его сторон.
Можно ли в любой четырехугольник вписать окружность?
Ответ. Нельзя. В четырехугольник можно вписать окружность только при условии, что суммы длин его противоположных сторон равны.
Вокруг произвольного треугольника можно описать окружность, притом только одну (см. рис. 1.16, б). Центр окружности, описанной вокруг треугольника, является точкой пересечения серединных перпендикуляров, проведенных к его сторонам. Центр окружности , описанной вокруг треугольника , равноудален от его вершин.
На рисунке 1.16, б изображена окружность с центром , описанная вокруг треугольника , — ее радиус. Если радиус описанной окружности , стороны треугольника, вписанного в окружность, и — полупериметр треугольника, то
Можно ли описать окружность вокруг произвольного четырехугольника?
Ответ. Нельзя. Вокруг четырехугольника можно описать окружность только тогда, когда суммы противоположных углов равны 180°.
Треугольник и его элементы
Треугольником называется фигура, состоящая из трех точек, которые не лежат на одной прямой, и трех отрезков, которые попарно соединяют эти точки. Рассмотрим (рис. 1.17), в котором выделяют шесть основных элементов: три внутренних угла и три соответственно противолежащие им стороны .
Треугольник называется тупоугольным, прямоугольным или остроугольным, если его наибольший внутренний угол соответственно больше, равен или меньше 90°.
Треугольник называется равнобедренным, если у него две стороны равны (боковые стороны). Основанием равнобедренного треугольника является сторона, которая не равна ни одной из двух других равных сторон.
Треугольник, все стороны которого равны, называется равносторонним, или правильным.
Соотношение между сторонами и углами треугольника:
- — против большей стороны лежит больший угол, и наоборот;
- — против равных сторон лежат равные углы;
- — теорема синусов: ;
- — теорема косинусов: (квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними).
Треугольник можно определить любой тройкой таких основных элементов: либо двумя сторонами и углом между ними, либо одной стороной и двумя углами, либо тремя сторонами.
Например, со сторонами можно задать так:
- ;
Соотношение между внутренними и внешними углами треугольника: любой внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Из трех отрезков можно образовать треугольник тогда и только тогда, когда любая его сторона меньше суммы и больше разности двух других его сторон. В любом треугольнике можно провести три медианы, три биссектрисы и три высоты.
Свойства биссектрисы угла треугольника: биссектрисы треугольника пересекаются в одной точке, которая лежит в середине треугольника и является центром вписанной
в него окружности.
Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим к ней сторонам (рис. 1.18; — биссектриса, ).
Основные свойства медиан треугольника:
- Медианы треугольника пересекаются в одной точке, которая лежит в середине треугольника.
- Медианы треугольника точкой их пересечения делятся в соотношении 2 : 1 (считая от вершин треугольника).
- Медиана делит треугольник на два треугольника, площади которых равны (рис. 1.18; — медиана, ).
- Три медианы треугольника делят треугольник на шесть треугольников, площади которых равны.
Прямые, на которых лежат высоты треугольника, пересекаются в одной точке — ортоцентре треугольника, которая может находиться во внутренней или внешней области треугольника. Высоты треугольника, проведенные к его сторонам и , обозначаются и соответственно. Высота треугольника определяется через его стороны по формуле:
.
Медиана треугольника , проведенная к стороне , определяется через стороны треугольника по формуле:
В каждом треугольнике можно построить три средние линии — отрезки, соединяющие середины двух его сторон. Средняя линия треугольника параллельна третьей стороне треугольника и равна ее половине. Средняя линия треугольника отсекает от него подобный треугольник, площадь которого относится к площади основного треугольника как 1 : 4.
Свойства равнобедренного треугольника: углы при основании треугольника равны; высота, проведенная к основанию, является также биссектрисой и медианой.
Свойства равностороннего треугольника: все углы равны (каждый угол равен 60°); каждая из трех высот является также биссектрисой и медианой; центр окружности, описанной вокруг треугольника, совпадает с центром окружности, вписанной в него.
Прямоугольный треугольник имеет сторону, которая лежит против прямого угла, — гипотенузу и две стороны, образующие прямой угол, — катеты (рис. 1.19).
Стороны прямоугольного треугольника и ( — гипотенуза) связаны между собой соотношением, называемым теоремой Пифагора: . Читается так: квадрат
длины гипотенузы равен сумме квадратов длин катетов.
Свойства прямоугольного треугольника:
- Катет является средним пропорциональным между гипотенузой и проекцией этого катета на гипотенузу: и (рис. 1.19).
- Высота, проведенная из вершины прямого угла, является средним пропорциональным между проекциями катетов на гипотенузу: .
- Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы.
- Для сторон прямоугольного треугольника справедливы отношения:
Выпуклые четырехугольники
Четырехугольник, противоположные стороны которого попарно параллельны, называется параллелограммом (рис. 1.20).
- Середина диагонали параллелограмма является его центром симметрии.
- Противоположные стороны параллелограмма равны.
- Противоположные углы параллелограмма равны.
- Каждая диагональ параллелограмма делит его на два равных треугольника.
- Диагонали параллелограмма делятся точкой пересечения пополам.
- Сумма квадратов диагоналей параллелограмма ( и ) равна сумме квадратов всех его сторон:
Чтобы доказать, что некоторый заданный четырехугольник является параллелограммом, следует, согласно определению, убедиться в параллельности его противоположных сторон. Иногда такие рассуждения являются громоздкими, а иногда -излишними. Существуют другие доказанные признаки, на основании которых можно утверждать, что данный четырехугольник является действительно параллелограммом.
Если в четырехугольнике исполняется любое из таких условий:
- противоположные стороны попарно равны;
- две противоположные стороны равны и параллельны;
- противоположные углы попарно равны;
- диагонали в точке пересечения делятся пополам, — то такой четырехугольник является параллелограммом.
Прямоугольник — это параллелограмм, в котором все углы равны. Поскольку сумма углов четырехугольника равна , то в прямоугольнике все углы прямые. Прямоугольник имеет все свойства параллелограмма. Кроме того, он имеет еще одно свойство: диагонали прямоугольника равны.
Для прямоугольника справедлива и обратная теорема: если у параллелограмма диагонали равны, то он — прямоугольник. Эта теорема является признаком прямоугольника.
Ромб — это параллелограмм, в котором все стороны равны. Кроме общих свойств параллелограмма, ромб имеет и другие, характерные только для него.
Диагонали ромба взаимно перпендикулярны и делят его углы пополам. Справедлива и обратная теорема, которая является признаком ромба: если у параллелограмма диагонали взаимно перпендикулярны или если в нем диагонали делят углы пополам, то такой параллелограмм — ромб.
Квадрат — это параллелограмм, в котором все углы равны и все стороны равны.
Таким образом, квадрат — это прямоугольник с равными сторонами или квадрат — это ромб с равными углами (прямыми). Очевидно, что квадрат имеет все свойства прямоугольника и ромба.
Трапеция — это четырехугольник, в котором только две противоположные стороны параллельны. Эти параллельные стороны называются основаниями трапеции, две другие стороны — боковыми сторонами.
Если боковые стороны трапеции равны между собой, такую трапецию называют равнобокой (рис. 1.21; ).
Равнобокая трапеция имеет такие свойства:
- Углы, прилежащие к основанию равнобокой трапеции, равны. Справедливо и обратное утверждение: если углы, прилежащие к основанию трапеции, равны, то такая трапеция равнобокая.
- Диагонали равнобокой трапеции равны.
- Сумма противоположных углов равнобокой трапеции равна 180°.
Отрезок, соединяющий середины боковых сторон трапеции, называется ее средней линией (рис. 1.21; — средняя линия, , ).
Средняя линия трапеции параллельна ее основаниям и равна их полусумме (рис. 1.21; ).
Задачи и методы их решения
Для геометрии закономерным является то, что введенные основные понятия и сформулированная аксиоматика составляют основу для новых утверждений. Однако справедливость последних необходимо доказывать путем определенных рассуждений, основывающихся на ранее доказанных утверждениях или аксиомах. Так формируются математические задачи.
Что такое математическая задача?
Существуют разные определения этого понятия, например: математическая задача — это любое требование вычислить, построить, доказать, исследовать что-либо, или вопрос, равносильный такому требованию.
В каждой задаче что-то дано (условие) и что-то нужно доказать или найти (требование, вывод). Выполнить поставленное требование — и означает решить задачу. Отметим, что если истинность какого-либо, часто используемого математического утверждения установлена путем рассуждения (доказательства), то такое утверждение называют теоремой.
Можно ли утверждать, что для успешного решения геометрических задач и доказательства теорем достаточно свободно владеть всем теоретическим материалом?
Нет. Это не так. При хорошем знании теории следует овладеть еще и практическими навыками. А это возможно только в процессе решения задач, начиная с простейших и постепенно переходя к более сложным.
Математические задачи условно разделены на четыре вида, в соответствии с их требованиями: задачи на вычисление, доказательство, исследование и построение. С ними вы уже ознакомились в курсе планиметрии.
Приступая к решению задачи, следует выбрать метод. Методы делят:
- а) по структуре — синтетический, аналитический, от противного и др.;
- б) по использованию математического аппарата — алгебраический, векторный, координатный, метод площадей, метод геометрических преобразований и др.
Суть синтетического метода заключается в том, что, исходя из условия задачи или теоремы с использованием известных утверждений строится цепочка логических рассуждений, последнее из которых совпадает с требованием задачи. Приведем пример.
Пример №1
Биссектриса угла прямоугольника делит большую сторону на два отрезка -7 см и 9 см. Найдите периметр этого прямоугольника.
Дано: — прямоугольник; — биссектриса, ; (или ).
Найти:
— биссектриса прямого угла -секущая, поэтому как внутренние разносторонние. — биссектриса, следовательно, . Таким образом, .
В : , следовательно, — равнобедренный и .
1. Если , , то и .
.
2. Если , и .
.
Ответ. 46 см или 50 см.
Почему именно так?
Пусть по условию — заданная биссектриса. Точка разбивает отрезок на два отрезка и . Далее, учитывая параллельность противоположных сторон прямоугольника и их пересечение секущей ( — биссектриса), устанавливаем равность двух углов треугольника. Это определяет вид треугольника -равнобедренный, а значит, равность двух сторон. Т.е. .
Если , то ; периметр: .
Если , то ; периметр: . Таким образом, периметр прямоугольника может быть 46 см или 50 см.
Эта задача является опорной, поскольку на такой идее строятся многие задачи и для параллелограмма, и для трапеции. У этих фигур биссектриса угла отсекает всегда равнобедренный треугольник.
Отметим, что сокращенное обозначение углов в виде . упрощает запись и экономит время, поэтому в таких случаях им пользоваться удобнее.
Как видим, в процессе решения задачи 1 используются только известные геометрические утверждения и производятся соответствующие вычисления. Причем для каждой геометрической задачи такие рассуждения свои.
Суть аналитического метода состоит в том, что, исходя из требования (вывода) утверждения (теоремы или задачи) и опираясь на известное утверждение, строится цепочка логических рассуждений, которая показывает, что требование является следствием условия. Приведем пример.
Пример №2
Докажите, что середины сторон любого выпуклого четырехугольника являются вершинами параллелограмма.
Дано: — четырехугольник; , ;;
Доказать: — параллелограмм.
— заданный четырехугольник. — середины соответствующих сторон. и — диагонали четырехугольника .
В — средняя линия, следовательно, .
В — средняя линия, следовательно, .
Имеем: 1. и , следовательно, (по признаку параллельных прямых).
2. Аналогично как средний линии треугольников и .
Итак, в четырехугольнике противоположные стороны параллельны, следовательно, он — параллелограмм, согласно признаку параллелограмма. Что и требовалось доказать (ч.т.д.).
Почему именно так?
Требование задачи: доказать. Это означает, что истинность утверждения следует подтвердить цепочкой рассуждений.
Чтобы четырехугольник был параллелограммом, достаточно показать, что его противоположные стороны параллельны. Для этого заданный четырехугольник разбиваем на два треугольника одной диагональю, а потом — второй. Средние линии одной пары треугольников параллельны диагонали , а второй пары — . (Отрезок, соединяющий середины двух сторон, является средней линией треугольника, которая имеет свойство: параллельна третьей стороне треугольника.) Отсюда, средние линии каждой пары треугольников параллельны между собой. Таким образом, получаем, что в четырехугольнике противоположные стороны параллельны, следовательно, он — параллелограмм.
Отметим: доказательство того, что четырехугольник, вершины которого являются серединами произвольного выпуклого четырехугольника, — параллелограмм, можно проводить и другими методами.
Синтетический и аналитический методы называют также прямыми методами решения математических задач.
Чтобы решить задачу прямым методом, следует начать с анализа содержания задачи, от которого зависит выбор метода решения. Далее необходимо создать модель в виде рисунка и продолжить рассуждать над каждым действием, которые в совокупности образуют цепочку действий, ведущих либо от условия к требованию, либо от требования к условию.
Суть метода доказательства от противного состоит в том, что, имея утверждение, строим новое, возразив выводу данного. Формулируется утверждение. Исходя из вывода противоположного утверждения, строим цепочку истинных утверждений, пока не получим утверждение, которое противоречит либо условию, либо известной аксиоме или теореме, либо предположению. Таким образом приходим к выводу, что противоположное утверждение ошибочно, а потому исходное является истинным (тут действует логический закон: из двух противоположных утверждений одно истинное, другое ошибочное, третьего не дано). Рассмотрим пример.
Пример №3
Докажите утверждение: если две прямые параллельны третьей, то они параллельны между собой.
Строим противоположное утверждение: существуют две прямые, параллельные третьей и не параллельные между собой.
От противного. Предположим, что , но . Тогда .
Получили утверждение, которое противоречит аксиоме параллельности: через точку на плоскости проходят две различные прямые, параллельные третьей. Следовательно, противоположное утверждение ошибочно, поэтому исходное утверждение — истинное. Т.е. две прямые, параллельные третьей, параллельны друг другу. Ч.т.д.
Почему именно так?
Исходим из вывода нового утверждения: пусть прямые и , параллельные третьей прямой , не параллельны между собой. Тогда они пересекаются в некоторой точке . Получили, что через точку проходят две различные прямые, параллельные третьей. Это противоречит аксиоме параллельности. Пришли к противоречию. Последнее утверждение ошибочно, следовательно, исходное утверждение — истинное.
Математическую задачу считают решенной, если:
- записан ответ в виде числа, выражения, указан алгоритм построения рисунка, если это задача на вычисление, построение или исследование;
- подтверждено сформулированное в задаче утверждение, если это задача на доказательство.
Метод от противного называют непрямым методом решения математических задач.
Рассмотрим некоторые другие методы решения геометрических задач, которые делят на виды по использованию математического аппарата.
Алгебраический метод решения задач
Решая задачу алгебраическим методом, следует уделить внимание таким этапам:
- Моделирование текста задачи с помощью рисунка (в большинстве случаев).
- Введение обозначений искомых величин или тех, которые приводят к искомым (чаще всего буквами латинского алфавита).
- Составление уравнения или системы уравнений с использованием введенных определений и известных геометрических соотношений между искомыми и данными величинами.
- Решение составленного уравнения или системы уравнений. Возврат к введенным обозначениям и определение искомых геометрических величин. По необходимости, выполнение исследования найденных решений.
- Запись ответа.
Задачи, в которых задана зависимость между двумя измерениями, сводятся к решению уравнения. Например, одна из сторон параллелограмма на 3 см длиннее другой, а периметр -30 см. Нужно найти длины сторон параллелограмма. Тогда, введя переменную как длину стороны этого параллелограмма, имеем длину второй стороны . Учитывая определение периметра параллелограмма и его известное значение, получаем уравнение:
Приведем другие примеры решения задач алгебраическим методом.
Пример №4
Периметр прямоугольного треугольника равен 36 см. Гипотенуза относится к катету как 5 : 3. Найдите стороны треугольника.
Дано:
Найти:
Обозначим коэффициент пропорциональности через . Тогда или
Ответ. 15 см, 9 см и 12 см.
Почему именно так?
— единственное линейное измерение, с которым связаны стороны треугольника.
Пусть , отсюда .
. Определить сторону можно по теореме Пифагора: , отсюда . Метод решения — алгебраический, поскольку используется математическая модель — уравнение .
Пример №5
В параллелограмме диагонали равны 16 см и 20 см. Меньшая из них перпендикулярна к его стороне. Найдите площадь этого параллелограмма.
Дано: — параллелограмм;
.
Найти:
Почему именно так?
Пусть — заданный параллелограмм, в котором и .
Обозначим стороны параллелограмма:
. Тогда имеем уравнение: , отсюда
По теореме Пифагора из ():
, т.е. имеем: или .
Составим систему уравнений:
Ответ.
Почему именно так?
В ходе решения этой задачи сначала выбираем формулу для вычисления площади параллелограмма.
, где — основание параллелограмма, — высота, проведенная к нему. , поэтому является высотой параллелограмма, проведенной к сторонам или , длины которых неизвестны. Стороны параллелограмма связаны с его диагоналями формулой
Длины сторон параллелограмма являются неизвестными, поэтому, очевидно, следует составить систему уравнений. Одно уравнение можно получить по вышеуказанной формуле, а второе — исходя из того, что диагональ параллелограмма перпендикулярна, имеем прямоугольный треугольник с двумя неизвестными сторонами (они же и стороны параллелограмма).
Отметим, что, принимая во внимание требование задачи, можно не искать обе стороны параллелограмма, а только, например, сторону .
Метод площадей
Если условие задачи содержит данные, по которым легко найти площадь одним из способов, то это делают в первую очередь. С помощью другого способа для вычисления площади этой самой фигуры делают второй шаг — составляют уравнение, в котором одно из линейных измерений неизвестно. Приравнивая площади, получают уравнение с одним неизвестным.
Пример №6
Стороны треугольника равны 13 см, 14 см и 15 см. Вычислите высоту, проведенную к стороне, которая имеет длину 14 см.
Пусть — стороны некоторого , причем , , .
и — высота, проведенная к средней стороне. По формуле Герона: а по другой формуле:
Ответ. .
Почему именно так?
Имея три стороны треугольника можно найти его площадь по формуле Герона: где
С другой стороны, площадь треугольника можно найти по формулам: где — высота, проведенная к -й стороне. Осталось выбрать сторону треугольника и получить уравнение: в котором неизвестным будет .
Отметим, что хотя во время решения задачи 6 использовалось алгебраическое уравнение, более существенными в решении этой задачи являются рассуждения о площади фигуры. Поэтому такой метод получил название метод площадей.
Пример №7
Катеты прямоугольного треугольника равны 3 см и 6 см. Найдите длину биссектрисы прямого угла.
Дано: ; — биссектриса; , .
Найти: .
Пусть — данный прямоугольный треугольник (), в котором , и -биссектриса прямого угла.
Введем обозначение: . Найдем площадь двумя разными способами:
Почему именно так?
Площадь можно найти по формуле , где и — два катета.
Биссектриса разделила на два треугольника, площади которых неизвестны. Их площади можно найти по формуле:
где и — стороны треугольника, а — угол между ними, т.е. .
Поскольку а биссектриса является неизвестной, то получим уравнение с одним неизвестным.
Метод векторов
Чтобы применить метод векторов к решению задачи, необходимо выполнить следующие действия:
- Перевести задачу на язык векторов, т.е. рассмотреть некоторые данные в ней отрезки как векторы и составить векторное равенство.
- Осуществить преобразование для векторного равенства, пользуясь соответствующими свойствами действий над векторами и известными векторными равенствами.
- Вернуться от векторного языка к геометрическому.
- Записать ответ.
Метод векторов чаще всего используется при решении задач, в которых требуется доказать: параллельность прямых (отрезков), деление отрезка в определенном соотношении; что три точки лежат на одной прямой; что данный четырехугольник — параллелограмм (ромб, прямоугольник, квадрат, трапеция). Проиллюстрируем суть этого метода на примере решения задачи.
Пример №8
Докажите, что середины сторон любого выпуклого четырехугольника являются вершинами параллелограмма.
Дано: — четырехугольник;
Доказать: — параллелограмм.
1. Переведем задачу на язык векторов, заменив отрезки векторами: .
2. Воспользуемся правилом треугольника для сложения векторов: . Учитывая, что ( — середина ) и ( — середина ), получаем равенство:
Поэтому .
Аналогично .
3. Поэтому . Т.е. векторы одинаково направлены, лежат на параллельных прямых и имеют одинаковую длину. Это доказывает, что — параллелограмм. Ч.т.д.
Почему именно так?
Переведя задачу на язык векторов, получаем требование задачи: доказать равность векторов и . Воспользовавшись правилом треугольника для нахождения суммы векторов, имеем:
Однако поэтому .
Аналогично получаем, что .
Таким образом, , что и требовалось доказать.
Метод координат
Решая задачу координатным методом, следует выполнить такие действия:
- Записать геометрическую задачу на языке координат.
- Преобразовать выражение или вычислить его значение.
- Перевести найденный результат на язык геометрии.
- Записать ответ.
Методом координат чаще всего решают задачи:
- на нахождение геометрических мест точек;
- на доказательство зависимостей между линейными элементами геометрических фигур.
Решая задачу методом координат, необходимо рационально выбрать систему координат: данную фигуру следует разместить относительно осей координат таким образом, чтобы как можно больше координат нужных точек равнялось нулю, а также одному и тому же числу. Например, координаты вершин прямоугольника можно выбрать так, как на рисунке 1.35:
Проиллюстрируем суть метода координат на примере.
Пример №9
Докажите, что когда у параллелограмма диагонали равны, то он прямоугольник.
Разместим параллелограмм в системе координат таким образом, чтобы его вершины имели координаты: , , причем .
По условию . Выразим расстояние между точками и , и через их координаты:
Тогда, или , отсюда .
Поскольку , то, а это означает, что точка лежит на оси .
Поэтому угол прямой. Отсюда следует, что параллелограмм — прямоугольник.
Метод геометрических преобразований: метод поворота, метод симметрии, метод параллельного переноса, метод гомотетии.
Решая задачи методом геометрических преобразований, наряду с данными фигурами рассматривают новые, полученные из данных с помощью определенного преобразования. Выясняют свойства новых фигур, переносят эти свойства на данные фигуры, а затем находят способ решения задачи.
Говорят, что задачи, решенные методами векторов, координат, геометрических преобразований, площадей и другими методами, в которых используется больше свойств геометрических фигур, решены геометрическими методами.
Геометрия — одна из древнейших математических наук. Первые геометрические факты отображены в вавилонских клинописных таблицах, египетских папирусах и других источниках VI-III в. до н.э.
Название науки «геометрия» происходит от двух древнегреческих слов: «geo» (гео) — земля и «metreo» (метрео) — измере ние. В развитии геометрии выделяют четыре основных периода.
Первый период — зарождение геометрии как науки — протекал в Древнем Египте, Вавилоне и Греции примерно до V в. до н.э. Именно тогда ученые установили первые общие закономерности в природе и воспроизвели их в зависимостях между геометрическими величинами. Основной проблемой геометров того периода было вычисление некоторых площадей и объемов. Логических обоснований в задачах было очень мало. В основном геометрические свойства доказывались практическими наблюдениями, поиском закономерностей, экспериментальным путем, т.е. эмпирически.
Второй период — формирование геометрии в структурную систему. В VII в. до н.э. центром развития геометрии стала Греция. Древние геометры работали над систематизацией накопленных и новых знаний, устанавливали связи между геометрическими фактами, разрабатывали приемы доказательств. Значительный вклад в развитие математики, в частности геометрии, в этот период сделали Пифагор, Платон, Аристотель, Фалес, Анаксигор, Демокрит, Евклид. В книге «Начала» Евклида сформулированы понятия о фигуре, о геометрическом утверждении и доказательстве. Они остаются актуальными и сегодня.
Третий период — дополнение геометрии новыми методами -начался в первой половине XVII в., когда французский ученый Рене Декарт разработал метод координат, связавший евклидову геометрию с алгеброй и математическим анализом. Использование методов этих наук в геометрии дало возможность создать новые науки — аналитическую, а позднее — дифференциальную геометрию, проективную и начертательную геометрию. Таким образом, евклидова геометрия поднялась на качественно новую ступень по сравнению с геометрией древних: в ней рассматривались гораздо более общие фигуры и использовались новые методы.
Четвертый период — создание неевклидовой геометрии -связан с именем российского ученого Николая Ивановича Лобачевского, открывшего в 1826 г. возможности для создания неевклидовых геометрий. Им была построена совершенно новая, неевклидова геометрия, которую теперь называют геометрией Лобачевского.
Особенность начатого Н.И. Лобачевским периода в истории геометрии состоит в том, что после его открытия начали развиваться новые геометрические теории, новые «геометрии» и соответствующие обобщения самого предмета геометрии. В этот период возникло понятие о разновидностях пространства (термин «пространство» в науке может означать как обычное реальное пространство, так и абстрактное, «математическое», пространство). Некоторые теории создавались внутри евклидовой геометрии, как ее особые разделы, а позднее приобретали статус самостоятельных. Другие, подобно геометрии Лобачевского, вводили изменения аксиом и структурировались на основе этих изменений, обобщая и строя науку.
Именно так была создана геометрия Римана (Георг Фридрих Бернхард Риман (1826-1866) — немецкий ученый) и ее обобщения (1854-1866), получившие применение в теории относительности, механике и др.
В школьном курсе мы изучаем геометрию Евклида. Перевел труд древнегреческого ученого «Начала» украинский математик Михаил Егорович Ващенко-Захарченко (1825-1912) в 1880 г. На основе этой книги написано множество учебников по геометрии. Например, преподавание геометрии в советской школе почти до 1982 г. осуществлялось по учебнику российского педагога-математика А.П. Киселева (1852-1940). В 1980-х годах украинским математиком А.В. Погореловым было создано новое учебное пособие. Его и сегодня можно найти в библиотеках общеобразовательных учебных заведений.
Современная геометрия является многовекторной и стремительно развивается в совокупностях математических теорий, изучающих различные пространства и их фигуры. Значительный вклад в геометрию сделали и наши соотечественники: М.В. Остроградский, А.М. Астряб, А.П. Киселев, А.Д. Александров, А.Н. Колмогоров, А.В. Погорелов и др.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Стереометрия — формулы, определение и вычисление
- Возникновение геометрии
- Призма в геометрии
- Цилиндр в геометрии
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
http://www.evkova.org/planimetriya
Содержание:
Взаимное расположения прямых на плоскости:
Бывают два варианта взаимного расположения прямой и точки на плоскости: либо точка лежит на прямой в этом случае говорят, что прямая проходит через точку или точка не лежит на прямой иногда говорят, что точка не принадлежит прямой или прямая не проходит через точку.
Две прямые в плоскости могут пересекаться так как имеют общую точку или быть параллельными не имея общей точки. В пространстве может быть, когда две прямые не пересекаются, но они и не параллельны.
Определения
Два угла, на которые разбивается развернутый угол его внутренним лучом, называются смежными. Сумма мер двух: смежных углов равна 180°.
Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого угла Вертикальные углы равны.
Если две прямые пересекаются, они образуют четыре угла две пары вертикальных углов. Меньший из них — угол между данными прямыми.
Две прямые называются перпендикулярными, если они пересекаются под прямым углом. Отрезки или лучи называют перпендикулярными, если они лежат на перпендикулярных прямых Две прямые на плоскости называют параллельными, ест они не пересекаются.
Прямая, пересекающая две другие прямые, называется и: секущей. С двумя данными прямыми она образует 8 углов, не которые пары этих углов имеют отдельные названия:
- 1 и 3, 2 и 4 — внутренние накрест лежащие;
- 1 и 4,2 и 3 — внутренние односторонние;
- 1 и 8, 2 и 7, 3 и 6, 4 и 5 — соответственные;
- 5 и 7, 6 и 8 — внешние накрест лежащие;
- 5 и 8, 6 и 7 — внешние односторонние.
Признак параллельности прямых:
Две прямые параллельны, если с секущей они образу ют равные внутренние накрест лежащие углы, или равные соответственные углы, или такие внутренние одно сторонние углы, сумма которых равна 180°.
Свойства параллельных прямых:
Секущая с двумя параллельными прямыми образуя равные внутренние накрест лежащие углы, равные ее ответственные углы, такие внутренние односторонние углы, сумма которых равна 180°.
Две прямые, параллельные третьей, параллельны.
Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой прямо» Две прямые, перпендикулярные к третьей, параллельны
Смежные и вертикальные углы
Два угла, на которые делится развернутый угол его внутренним лучом, называют смежными.
Одна сторона у смежных углов общая, а две другие — дополнительные лучи. Если точки А, О, В лежат на одной прямой, а С — произвольная точка, не принадлежащая прямой АВ, то углы АОС и СОВ — смежные (рис. 45).
Свойство смежных углов сформулируем в виде теоремы.
В математике теоремой называют каждое утверждение, истинность которого устанавливается путем логических рассуждений. Цепочку таких рассуждений называют доказательством.
В нашем учебнике теоремы напечатаны жирным шрифтом и пронумерованы.
Теорема: Сумма мер двух смежных углов равна 180°
Доказательство:
Объединение двух смежных углов является развернутым углом. Мера развернутого угла равна 180°. Значит, какими бы ни были смежные углы, сумма их мер равна 180°.
Два угла называются вертикальными, если стороны одного являются дополнительными лучами сторон другого. Например, если прямые АС и BD пересекаются в точке О, то углы AOD и ВОС — вертикальные (рис. 46). Каждый из них — смежный с углом АОВ. Углы АОВ и COD — тоже вертикальные.
Теорема: Вертикальные углы равны.
Доказательство:
Пусть AOD и ВОС — любые вертикальные углы (см. рис. 46). Каждый из них смежный с углом АОВ. По теореме о сумме смежных углов
отсюда
Правые части этих равенств одинаковые, поэтому Что и следовало доказать
Для любознательных:
Слово смежные употребляют не только применительно к углам. Смежный—это имеющий общую границу с чем-то или прилегающий к чему-то, соседний. Можно говорить о смежных комнатах, смежных полях и т. п. Относительно углов это понятие имеет особый смысл. Не каждые два угла с общей стороной называют смежными. Например, на рисунке 47 углы АОВ и ВОС имеют общую сторону ОВ, но не являются смежными.
Смежные углы — это два угла, состоящие в определенном отношении. Один угол не может быть смежным. Когда говорим, что какой-то угол смежный, то обязательно должны уточнить: смежный с каким углом? Отношение смежности углов имеет такое свойство: если угол А смежный с углом B, то и угол В смежный с углом А.
Пусть угол А смежный с углом В, а угол B смежный с углом
C. Что можно сказать об углах А и С? Они либо вертикальные, либо угол С — это тот же угол А (рис. 48).
Слово вертикальные также относится не только к углам. В основном вертикально расположенным считают продолговатый предмет, расположенный в направлении отвеса (перпендикулярно к горизонту).
Всегда верно свойство: если угол А вертикальный углу В, то и угол В вертикальный углу А.
Пример №1
Найдите меры смежных углов, если один из них на 50° больше другого.
Решение:
Пусть мера меньшего из смежных углов равна х, тогда мера большего угла х + 50°. По свойству смежных углов х + х + 50° = 180°, откуда х = 65°, а х + 50° = 115°.
Ответ. 65° и 115°.
Пример №2
Один из четырех углов, образованных пересечением двух прямых, вдвое больше другого. Найдите меру каждого из полученных углов.
Решение:
При пересечении двух прямых образуются вертикальные и смежные углы. Поскольку вертикальные углы равны, то они условие задачи не удовлетворяют. Делаем вывод: один из смежных углов вдвое больше другого, их меры х и 2х. По свойству смежных углов х + 2х = 180°, откуда х = 60°, а 2х = 120°. Соответствующие им вертикальные углы равны 60° и 120°.
Ответ. 60°, 120°, 60°, 120°.
Перпендикулярные и параллельные прямые
Вспомните, как могут располагаться на плоскости две прямые. Если они пересекаются, то образуют четыре угла — две пары вертикальных углов (речь идет об углах меньше развернутого). Меньший из них считается углом между данными прямыми. Например, на рисунке 56 прямые АВ И CD пересекаются под углом 50°. Говорят также, что угол между прямыми АВ и CD равен 50°. Если две прямые, пересекаясь, образуют четыре Прямых угла, говорят, что они пересекаются под прямым углом.
Две прямые, пересекающиеся под Прямым углом, называют перпендикулярными прямыми. Прямые а и б на рисунке 57 перпендикулярны одна Н другой. Записывают так:или
Отрезки или лучи называют перпендикулярными, если они лежат на перпендикулярных прямых.
Если отрезок АВ лежит на прямой, перпендикулярной к прямой а, говорят, что отрезок АВ перпендикулярен к прямой а. Если при этом точка В принадлежит прямой о, то отрезок АВ называют перпендикуляром, проведенным из точки А к прямой а (рис. 58). Точку В называют основанием перпендикуляра, а длину Перпендикуляра АВ — расстоянием от точки А до прямой а.
Через произвольную точку Р всегда можно провести прямую, перпендикулярную к данной прямой а. Это можно сделать с помощью угольника (рис. 59) или транспортира (рис. 60). Позже вы узнаете, как можно выполнить такое построение с помощью линейки и циркуля. Можно доказать, что существует только одна прямая, перпендикулярная к данной прямой и проходящая через данную точку.
Не каждые две прямые пересекаются. Особого внимания заслуживают прямые, которые не пересекаются и лежат в одной плоскости.
Две прямые на плоскости называются параллельными, если они не пересекаются (рис. 61). Если прямые а и b параллельные, пишут так: а || b.
Представление о параллельных прямых дают линии в тетради, линии нотного стана (рис. 62), ребра бруска.
Два отрезка или луча называют параллельными, если они лежат на параллельных прямых. Например, если ABCD — прямоугольник, то АВ || DC и ВС || AD.
Через любую точку Р, не лежащую на прямой а, можно провести прямую, параллельную прямой а (рис. 63, а). Для этого можно через точку Р провести прямую с, перпендикулярную к прямой а, а потом прямую Ь, перпендикулярную к прямой с (рис. 63, б). При таком построении всегда b || а. Можно воспользоваться линейкой и угольником.
Для любознательных:
Можно доказать (попытайтесь!),что две прямые одной плоскости, перпендикулярные к третьей прямой, параллельны. То есть, если
Но если прямые а и b не принадлежат одной плоскости, то такое утверждение ошибочно. Например, если
— куб, то
но прямые АВ и
не параллельны (рис. 64).
Слово параллельные происходит от греческого слова «параллелос», что в переводе означает «идущие рядом». Если говорить, что какая-либо прямая параллельна, то обязательно следует сказать, какой именно прямой она параллельна. Таким образом, параллельность прямых — это своеобразное отношение между двумя прямыми. Отношение параллельности прямых имеет такое свойство: если а || b, то и b || а. Другими отношениями являются перпендикулярность прямых, равенство углов и др. Символы этих отношений:
Позже вы узнаете о других отношениях между геометрическими объектами.
Как проводить параллельные прямые с помощью линейки и циркуля, вы узнаете позже.
Пример №3
Докажите, что биссектрисы смежных углов перпендикулярны
Решение:
Пример №4
Обозначьте на координатной плоскости точки А (2; 3) и В (-4; -3). Найдите расстояния от этих точек до осей координат, если длина единичного отрезка равна 1 см.
Решение:
Из точек А и В опустим перпендикуляры на оси координат (рис. 66). Длина отрезка AM — расстояние от точки А до оси ОХ, а длина отрезка AN — расстояние от точки А до оси OY. По рисунку видим, что AM = 3 см, a AN = = 2 см.
Аналогично определяем, что расстояние от точки В до осей координат равно 3 см и 4 см.
Ответ. От точки А — 3 см и 2 см; От точки В — 3 см и 4 см.
Признаки параллельности прямых
Важную роль в исследовании параллельных прямых играют понятия секущей и некоторых пар углов.
Пусть о и b — две произвольные прямые плоскости. Прямая с, пересекающая их, называется секущей прямых а и b (рис. 73).
Прямые а и b с их секущей с образуют 8 углов. На рисунке 73 они пронумерованы. Некоторые пары этих углов имеют специальные названия:
- внутренние накрест лежащие углы: 1 и 3, 2 и 4;
- внутренние односторонние углы: 1 и 4, 2 и 3;
- соответственные углы: 1 и 8, 2 и 7, 3 и 6, 4 и 5.
Обратите внимание! Если два каких-либо внутренних накрест лежащих угла равны, то также равны и внутренние накрест лежащие углы другой пары (рис. 74). Если, например,
, потому что углы, смежные с равными, равны.
Случай, когда внутренние накрест лежащие углы равны, заслуживает особого внимания, поскольку именно при этом условии прямые а и b параллельны.
Теорема: (признак параллельности прямых).
Две прямые параллельны, если они с секущей образуют равные внутренние накрест лежащие углы.
Доказательство:
Пусть секущая АВ пересекает прямые а и b так, что образовавшиеся при этом внутренние накрест лежащие углы 1 и 3 равны. Тогда, как показано выше, углы 2 и 4 тоже равны. Допустим, что при таком условии прямые а и б пересекаются в какой-то отдаленной точке С. В результате образуется
треугольник ABC (на рисунке 75 он изображен схематически в виде пятиугольника). Представим, что этот треугольник повернули вокруг точки О — середины отрезка АВ — так, что отрезок ОА занял положение ОВ. Тогда, поскольку луч АС совместится с лучом ВК, а луч ВС — с лучом АР. Так как лучи АС и ВС (по предположению) имеют общую точку С, то лучи ВК и АР тоже имеют какую-то общую точку
.Это значит, что через две точки С и
проведены две разные прямые. А этого не может быть.
Таким образом, если то прямые а и 6 не могут пересекаться. А поскольку они лежат в одной плоскости и не пересекаются, то они параллельны: а || b. Что и требовалось доказать.
Обратите внимание на способ доказательства теоремы 3. Чтобы доказать, что прямые а и b параллельны, мы показывали, что они не могут пересекаться, то есть допускали противоречащее тому, что требовалось доказать. Такой способ рассуждения называют методом доказательства от противного.
На основе доказанной теоремы 3 нетрудно доказать и другие признаки параллельности прямых.
Теорема: Две прямые параллельны, если при пересечении с секущей они образуют внутренние односторонние углы, сумма которых равна 180°.
Доказательство:
Пусть, например, на рисунке 76 сумма внутренних односторонних углов 1 и 4 равна 180°. Сумма смежных углов 3 и 4 тоже равна 180°. Поэтому . Это — внутренние накрест лежащие углы; если они равны, то прямые а и b параллельны.
Теорема: Две прямые параллельны, если при пересечении с секущей они образуют равные соответственные углы.
Доказательство:
Пусть секущая с пересекает прямые а и b так, что образовавшиеся при этом соответственные углы 1 и 8 равны (рис. 77). Углы 8 и 3 равны, поскольку вертикальны.
Поэтому если
откуда следует, что
Заслуживает внимания такое следствие из теоремы 3.
Две прямые, перпендикулярные к третьей прямой, параллельны.
Ведь если каждая из прямых а и b перпендикулярна к с, то образовавшиеся при этом внутренние разносторонние углы равны, поскольку они прямые (рис. 78). Cледовательно, а и b параллельны.
Для любознательных:
Углы 5 и 7 (а также 6 и называют внешними накрест лежащими, а углы 5 и 8 (а также 6 и 7) — внешними односторонними углами (рис. 79).
Используя эти понятия, попробуйте сформулировать и доказать еще два признака параллельности прямых. Полезно также лучше понять сущность метода доказательства от противного. Если утверждение А противоречит утверждению В, то такие два утверждения называют противоречащими или противными друг другу. Из двух взаимно е противоречащих утверждений всегда одно верно, а другое ложно. Поэтому если убедимся, что утверждения А и В противоречат друг другу и, например, что утверждение В ложное, то можем быть уверены, что утверждение А верно.
Не следует путать противоречащие утверждения с противоположными. Например, когда речь идет о числовых выражениях и натуральных числах, то утверждения «выражение А положительное» и «выражение А отрицательное» или «число п простое» и «число л сложное» — противоположные, но не противоречащие, ведь каждое из них может быть неправильным. А вот утверждения «выражение А положительное» и «выражение А неположительное» или «число п простое» и «число п непростое» — взаимно противоречащие. Непростое означает составное или равное 1; неположительное — отрицательное или равное нолю.
Доказывая методом от противного, опровергать нужно не противоположное утверждение, а противоречащее данному. Опровергать что-либо — означает показать, что оно ошибочно.
Пример №5
Как построить параллельные прямые, пользуясь только линейкой и транспортиром?
Решение:
Начертим произвольный луч АВ и отложим равные углы ВАС и АСР, как показано на рисунке 80. Прямые АВ и СР параллельны, ведь углы ВАС и АСР внутренние накрест лежащие, и по построению они равны.
Через концы отрезка АВ с одной стороны от прямой АВ проведены лучи АК и ВС так, что70°. Параллельны ли эти лучи?
Прямую АВ можно считать секущей прямых АК и ВС (рис. 81).
Углы КАВ и ABC — внутренние односторонние. Поскольку их сумма 110° + 70° равна 180°, то прямые АК и ВС — параллельные (теорема 4). Поэтому и лучи АК и ВС — параллельные.
Ответ. Лучи АК и ВС параллельны.
Свойства параллельности прямых
Задача:
Даны прямая а и точка Р, не принадлежащая этой прямой. Проведите через точку Р прямую, параллельную прямой а.
Решение:
С помощью линейки и угольника построение можно выполнить, как показано на рисунке 90.
Можно ли через точку Р провести две разные прямые, параллельные прямой а? Геометры издавна считали истинным такое утверждение
Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
Древнегреческий геометр Евклид это утверждение принял без доказательства. Его назвали аксиомой Евклида, потому что все утверждения, принимаемые без доказательств, называют аксиомами. (Подробнее об аксиомах и теоремах — в следующем параграфе.)
Не все ученые считают аксиому Евклида верной. Геометрию, в которой аксиому Евклида признают верной, называют евклидовой геометрией. Вы изучаете евклидову геометрию.
Теорема: (обратная теореме 3). Если прямые параллельны, то внутренние накрест лежащие углы, образованные ими с секущей, равны.
Доказательство:
Пусть прямые АВ и CD параллельны, а КС — их секущая, проходящая через точку А (рис. 91). Докажем, что
Допустим что Проведем прямую АВХ так, чтобы выполнялось равенство
. По признаку параллельности прямых
, а по условию АВ || CD. Получается, что через точку А проведены две разные прямые, параллельные прямой CD. Это противоречит аксиоме Евклида. Таким образом, сделанное нами допущение приводит к противоречию. Поэтому
Следствие:
Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой прямой.
Действительно, если,
, то есть
Сформулируйте и докажите теоремы. Рис. 92 обратные теоремам 4 и 5.
Теорема: Две прямые, параллельные третьей, параллельны.
Доказательство:
Пусть каждая из прямых а и b параллельна прямой с. Докажем, что а || b.
Допустим, что прямые а и b не параллельны (рис. 93), а пересекаются в некоторой точке Р. Получается, что через точку Р проходят две разные прямые а и Ь, параллельные с. Это противоречит аксиоме Евклида. Поскольку прямые а и b не могут пересекаться, они параллельны.
Примечание:
Доказательство теоремы верно и в случае, если прямая с лежит между а и b.
Для любознательных:
Последнюю теорему называют теоремой о транзитивности параллельности прямых (лат. transitivus — переходной), поскольку она утверждает, что параллельность двух пар параллельных прямых переходит на третью пару:
Чтобы это утверждение было верным всегда, договорились считать, что каждая прямая параллельна сама себе, то есть а || а. Ведь если
а || b и b || а, то а || а.
Отрезки одной прямой тоже считают параллельными. Например, если А, В, С, К — точки одной прямой, то каждый из отрезков АВ, АС, АК, ВС, ВК, СК параллелен любому из них (рис. 94). В целесообразности такой договоренности вы убедитесь позже, изучая параллельные переносы, параллельное проектирование и т. п. А в седьмом классе основное внимание будет обращаться на параллельность отрезков и лучей, не лежащих на одной прямой.
Существуют геометрии, в которых аксиома Евклида не считается верной. Их называют неевклидовыми геометриями. Такова, например, геометрия Лобачевского (см. с. 195).
Пример №6
Докажите, что прямые, перпендикулярные к непараллельным прямым, пересекаются.
Решение:
Пусть прямые а и b пересекаются, а прямые шип перпендикулярны к ним: (рис. 95). Тогда
. Допустим, что m || п, то есть
Тогда и
, откуда следует, что а || b. Это противоречит условию задачи. Значит, прямые
не могут быть параллельными, они пересекаются.
Теоремы и аксиомы
Вы уже имеете представление о теоремах. Теорема — это утверждение, в истинности которого убеждаются с помощью логических рассуждений, доказательств.
Обычно теорема содержит условие (то, что дано) и заключение (что требуется доказать). Чтобы вычленить условйе и заключение теоремы, ее удобно подать в форме «Если… , то…». Например: «Если углы вертикальные, то они равны». Здесь слова перед запятой содержат условие теоремы, а после запятой — заключение.
Часто условие теоремы записывают после слова «дано», а заключение — после слова «доказать». Например, теорему о вертикальных углах можно оформить так.
Поменяв условие и заключение теоремы местами, получим новое утверждение (истинное или ложное). Если полученное таким способом утверждение истинное, его называют обратной теоремой.
Примеры:
- «Если углы вертикальные, то они равны» — данная теорема. «Если углы равны, то они вертикальные» — обратное утверждение (ложное).
- «Если соответственные утлы равны, то прямые параллельные» — данная теорема. «Если прямые параллельные, то соответственные углы равны» — обратная теорема. Важнейшие теоремы, в которых даются критерии чего- либо, называют признаками.
Доказывая теорему, ссылаются на другие истинные утверждения. Но в самом начале изучения геометрии еще никаких других истинных утверждений» нет. Поэтому некоторые Пермью утверждения обычно принимают без доказательств. Называют их аксиомами.
Некоторые аксиомы вам уже известны. Сформулируем их еще раз.
Какой бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, ей не принадлежащие.
- Через любые две точки можно провести прямую, и только одну.
- Из трех точек прямой одна и только одна лежит между двумя другими.
- Каждый отрезок имеет определенную длину.
- Каждый угол имеет определенную меру.
- Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
От теорем и аксиом следует отличать определения, в которых рйокрывается содержание понятия. Например: «Отрезком называется часть прямой, ограниченная двумя точками» — определение отрезка; «Острым углом называется угол, который «меньше прямого» — определение острого угла.
В определениях, аксиомах и теоремах — основное содержание геометрии. Их нужно знать, но формулировать (правильно!) можно и своими словами. Например, определение отрезка можно сформулировать так: «Отрезок — это часть прямой, ограниченная двумя ее точками», или так: «Часть прямой, ограниченная двумя ее точками, называется отрезком».
Для любознательных:
Слово аксиома греческого происхождения; сначала это слово обозначало: уважение, авторитет, неоспоримость; впоследствии словом «аксиома» начали называть утверждение, принимаемое без доказательства.
Слово теорема тоже греческого происхождения. Сначала теоремой называли зрелище, театральное представление. Первым геометрам доказанные ими теоремы казались довольно неожиданными, удивительными, словно интересные зрелища. И в самом деле удивительно: из немногих примитивных утверждений, принимаемых без доказательств, путем одних рассуждений человек может получить миллионы не очевидных следствий. Даже таких, которых в природе нигде не наблюдается. И таких, о существовании которых не догадывался ни один мыслитель.
Чтобы и вы поняли, какое удовлетворение ощущали первые геометры, открывая и доказывая все новые и новые свойства геометрических фигур с помощью одних лишь рассуждений, попробуйте ответить на один из таких вопросов.
Посмотрите на рисунок 108. На нем выделены 6 точек: середины сторон треугольника ABC и основания его высот. Кажется, все эти точки лежат на одной окружности. Действительно ли это так? В каждом треугольнике? Кто первым обнаруживал подобные закономерности и обосновывал их, тот испытывал огромное удовлетворение, словно путешественник, пришедший первым туда, где еще никто не бывал, или спортсмен, побивший мировой рекорд.
Пример №7
Биссектрисы внутренних накрест лежащих углов, образованных секущей с двумя параллельными прямыми, параллельны. Докажите. Сформулируйте обратное утверждение.
Решение:
Пусть ВС — секущая прямых АВ и CD, углы ABC и BCD — внутренние накрест лежащие, а ВК и СР — их биссектрисы (рис. 109). Покажем, что если АВ || CD, то ВК || СР.
Если АВ || CD, то как внутренние накрест лежащие при параллельных прямых. Половины равных углов равны, поэтому
Эти углы — внутренние накрест лежащие для прямых КВ и СР и секущей ВС. Поскольку эти углы равны, то прямые КВ и СР параллельны. А это и требовалось доказать.
Обратное утверждение: если биссектрисы внутренних накрест лежащих углов, образованных двумя прямыми с их секущей, параллельны, то параллельны и данные прямые.
Пример №8
Два луча называют сонаправленными, если один из них является частью другого или если они параллельны и расположены по одну сторону от прямой, проходящей через их начала. Приведите примеры.
Решение:
Лучи АК и ВК (рис. 110), а также лучи АК и ВТ (рис. 111).
Пример №9
Докажите, что углы с сонаправленными сторонами равны.
Решение:
Докажем, что если лучи ВА и РК, ВС и РТ сонаправленные, то углы 1 и 2 равны.
Если данные углы расположены, как показано на рисунке 112,
Если данные углы расположены, как показано на рисунке 113, то луч РТ составляет часть луча ВС. В этом случае, как соответственные углы при параллельных прямых ВА и РК.
- Треугольник
- Решение треугольников
- Треугольники и окружность
- Площадь треугольника
- Длина дуги кривой
- Геометрические фигуры и их свойства
- Основные фигуры геометрии и их расположение в пространстве
- Пространственные фигуры — виды, изображения, свойства
Прямая линия на плоскости. Взаимное расположение прямых
Всякое
уравнение первой степени относительно
и
,
т. е. уравнение вида
,
(6)
где
,
и
— постоянные коэффициенты, причем
,
определяет на плоскости некоторую
прямую. Это уравнение называетсяобщим
уравнением прямой.
Если
в общем уравнении прямой
,
то разрешив его относительно,
получим уравнение прямой с угловым
коэффициентом
,
(7)
где
— тангенс угла, образованного прямой с
положительным направлением оси;
— ордината точки пересечения прямой с
осью.
Уравнение
(8)
является
уравнением прямой, которая проходит
через точку
и имеет угловой коэффициент
.
Если
в общем уравнении прямой
,
то, разделив все члены на,
получим уравнение прямой «в отрезках»
,
(9)
где
,
– величины направленных отрезков,
отсекаемых прямой на осях координати
,
соответственно.
Уравнение
,
(10)
является
уравнением прямой, проходящей через
две точки
и
.
Обозначим
,
координаты направляющего вектора прямой
,
тогда (10) примет вид
,
(11)
где
– точка на прямой. Уравнение (11) называетсяканоническим
уравнением прямой.
Введя параметр
,
из (10) получимпараметрические
уравнения прямой
где
(12)
Уравнение
прямой, проходящей через точку
перпендикулярно вектору
,
имеет вид
.
(13)
Вектор
– называетсянормальным
вектором прямой.
Раскрывая в (13) скобки, получим общее
уравнение прямой
.
Таким
образом, в общем уравнении прямой,
коэффициенты при
и
суть координаты нормального вектора
прямой.
Пусть
две прямые заданы уравнениями с угловыми
коэффициентами
и
.
Возможны следующие случаи их взаимного
расположения:
-
прямые
параллельны (в частности совпадают)
тогда и только тогда, когда выполняется
условие
;
-
прямые
пересекаются в некоторой точке, тогда
угол между ними находится по формуле
;
-
прямые
перпендикулярны тогда и только тогда,
когда
.
Пример.
В равнобедренном прямоугольном
треугольнике даны декартовы координаты
вершины острого угла
и уравнение противолежащего катета
.
Составить уравнения двух других сторон
этого треугольника.
Решение.
Найдем
уравнение прилежащего катета. Так как
,
,
то уравнениеимеет вид
.
Угол между катетом и гипотенузой в
равнобедренном треугольникеравен
.
Для нахождения уравнения гипотенузы
воспользуемся формулой,
из которой найдем угловой коэффициент
прямой.
-
.
Тогда
уравнение
имеет вид
-
.
Тогда
уравнение
Ответ:
,
Прямая
и плоскость в пространстве
Плоскость
в декартовой системе координат может
быть задана следующими уравнениями:
1.
Общее уравнение плоскости
.
Кроме
того,
уравнение
плоскости, которая проходит через точку
перпендикулярно вектору
.
2.
Уравнение плоскости “в отрезках”
,
где
– величины направленных отрезков,
отсекаемых плоскостью на координатных
осях,
и
,
соответственно.
-
Уравнение
плоскости, проходящей через три точки
,
,
.
Прямая
в пространстве задается:
-
общими
уравнениями
в пространстве в
где
,
таким образом, прямая задана как линия
пересечения двух плоскостей.
-
каноническими
уравнениями
в
,
где
– точка, принадлежащая прямой, а
– направляющий вектор.
-
параметрическими
уравнениями
Пример.
Составить уравнение плоскости, проходящей
через точку
и прямую
.
Решение.
Уравнение
плоскости, проходящей через точку
и имеющей координаты вектора нормали
,
имеет вид
.
Найдем
координаты вектора нормали.
– данная точка,
– точка, лежащая на нашей прямой,
– координаты направляющего вектора
прямой. Тогда
.
Запишем
уравнение искомой плоскости
,
,
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
2.5.1. Взаимное расположение двух прямых
Рассмотрим две прямые, уравнения которых заданы в общем виде:
Тот случай, когда зал подпевает хором. Две прямые могут:
1) совпадать;
2) быть параллельными: ;
3) или пересекаться в единственной точке: .
Справка: – это математический знак пересечения.
Как определить взаимное расположение двух прямых?
Начнём с первого случая:
1) Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства
Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов:
. Из каждого уравнения следует, что
, следовательно, данные прямые совпадают.
И действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения
сократить на 2, то получится одно и то же уравнение:
– вспоминаем, что это «эталонный» вид общего уравнения прямой.
Второй случай, когда прямые параллельны:
2) Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных и
пропорциональны:
, но
В качестве примера рассмотрим прямые . Сначала проверяем пропорциональность соответствующих коэффициентов при переменных
:
Однако совершенно очевидно, что .
Вывод:
И третий случай, когда прямые пересекаются:
3) Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных и
НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства
Так, оставим систему для прямых :
Из первого уравнения следует, что , а из второго уравнения:
, значит, система несовместна (нет решений). Таким образом, коэффициенты при переменных
не пропорциональны.
Вывод: прямые пересекаются
В практических задачах можно использовать только что рассмотренную схему решения, но существует и более «цивилизованная» упаковка:
Задача 74
Выяснить взаимное расположение прямых:
Решение основано на исследовании направляющих векторов прямых:
а) Из уравнений найдём направляющие векторы прямых:
.
Вычислим определитель, составленный из координат данных векторов:
, значит, векторы
не коллинеарны и прямые
пересекаются.
Вопрос: всё ли вам понятно? Если нет, то используйте три ссылки выше. Ну а остальные перепрыгивают камень и следуют дальше, прямо к Кащею Бессмертному =)
б) Найдем направляющие векторы прямых :
– прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают (тут и определитель считать не надо).
Очевидно, что коэффициенты при переменных пропорциональны и
.
Выясним, справедливо ли равенство :
Таким образом,
в) Найдем направляющие векторы прямых :
Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны и прямые либо параллельны, либо совпадают.
Коэффициент пропорциональности «лямбда» можно узнать прямо соотношения коллинеарных направляющих векторов . Впрочем, можно и через коэффициенты самих уравнений:
.
Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:
Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).
Таким образом, прямые совпадают.
Ответ:
Очень скоро вы научитесь (или даже уже научились) решать рассмотренную задачу устно и буквально в считанные секунды – присмотрелись к уравнениям, и всё понятно.
2.5.2. Как найти прямую, параллельную данной?
2.4. Параметрические уравнениЯ прямой
| Оглавление |
Автор: Aлeксaндр Eмeлин